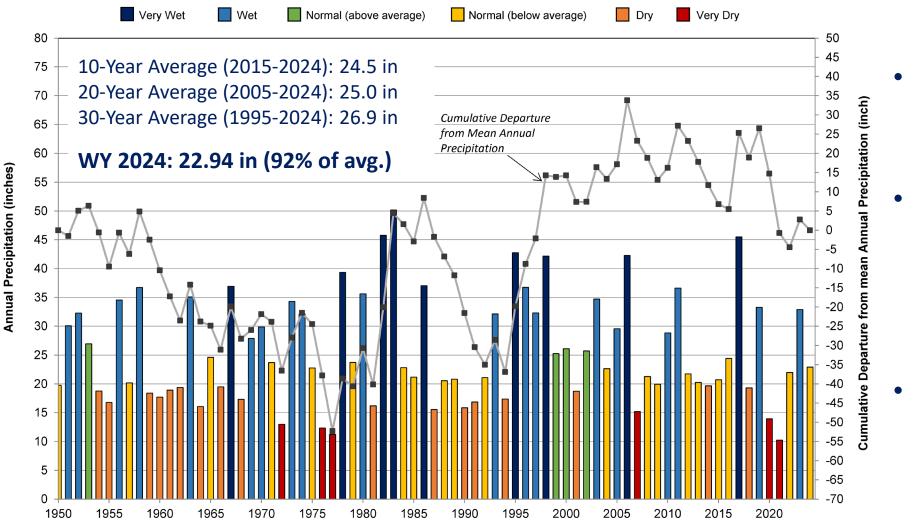
Napa County Groundwater Sustainability Agency Annual Report

Water Year 2024

May 6, 2025

Outline

WY 2024 Conditions

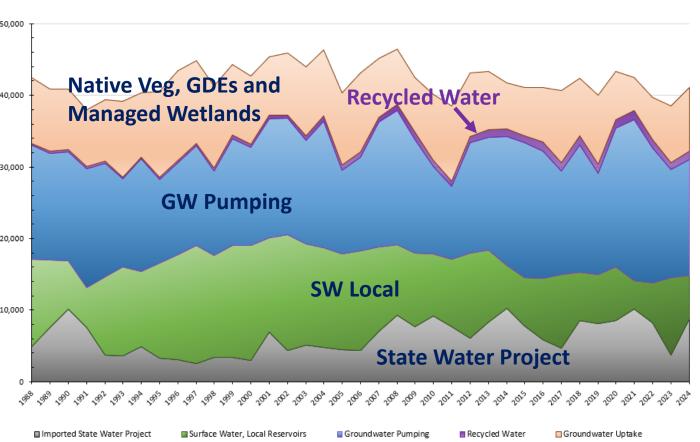

Napa Valley Subbasin Water Budget

Sustainability Indicators

GSP Implementation

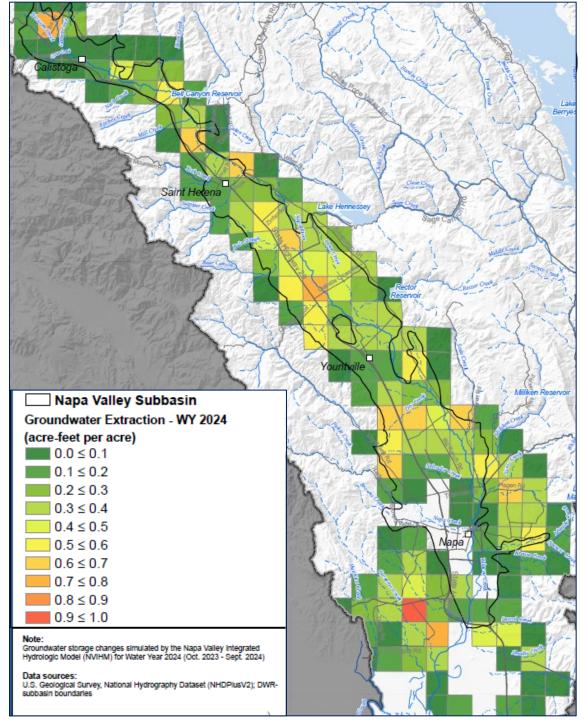
Historical Precipitation at Napa State Hospital

- Napa State Hospital weather station used for historical perspective.
- Napa Valley Integrated Hydrologic Model (NVIHM) uses spatially distributed precipitation for water budgets.
- Data are reviewed for completeness.

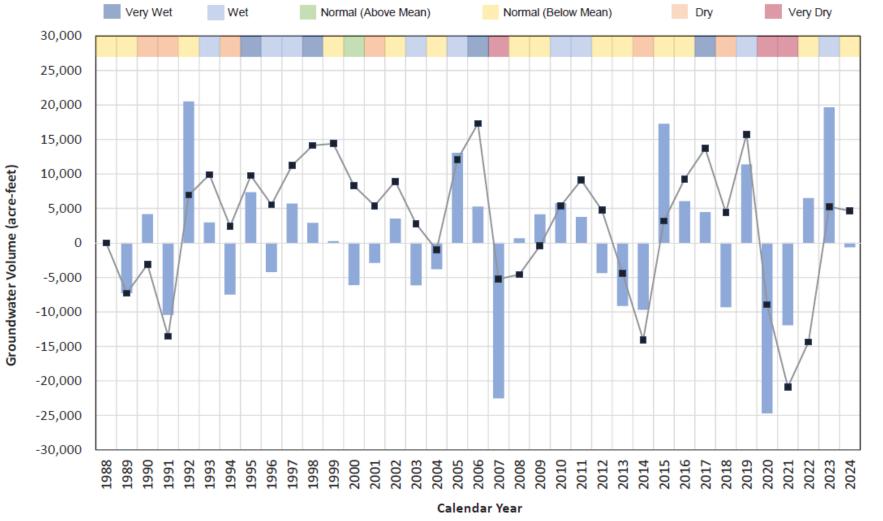

Water Year (Oct. - Sept.)

Napa Valley Subbasin Water Budget WY 2024

Water Use: WY 2024 (acre-feet)


Water Use	2022 (BN)	2023 (W)	2024 (BN)	50,00
Groundwater Pumping	19,120	15,300	16,210	40,00
Native Veg, GDEs & Managed Wetlands	5,910	7,830	9,360	00.06 eet)
Recycled Water Use	1,190	1,020	1,140	e (Acre-Fe
Local Surface Water Use (including reservoirs, diversions, etc.)	5,560	10,780	6,090	20,000 20,000 20,000
State Water Project Use	8,230	3,750	8,760	
TOTAL	40,010	38,680	41,560	

Groundwater Pumping, 2024 (Acre-feet)


Groundwater Pumping	Acre- feet	Percent Use
Ag (vines and other)	11,790	73%
Municipal	480	3%
Self-Supplied Users Domestic (2,619 AF for outdoor use)	2,870	18%
Small Public Water Systems	1,070	7%

TOTAL = 16,210 Acre-feet

Change in Groundwater Storage: Spring 2023 to Spring 2024

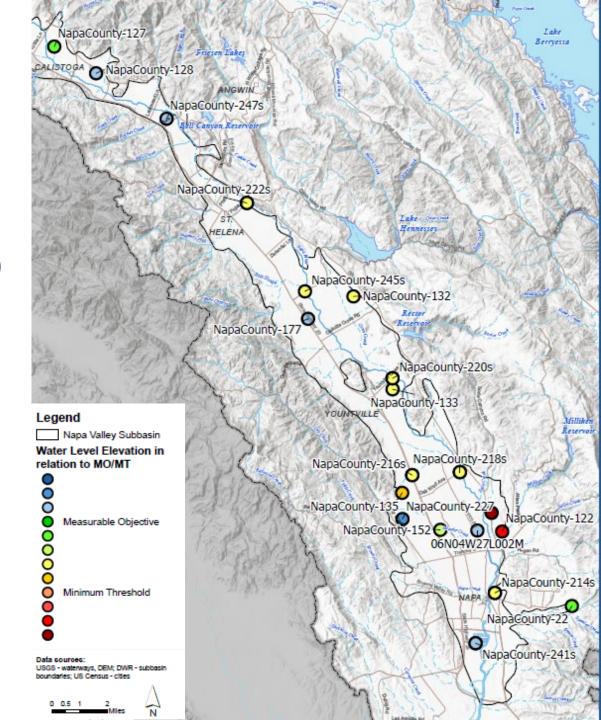
- Change in groundwater storage influenced by water year, pumping, and recharge.
- Slight decline in storage in WY 2024.
- Cumulative storage shows significant recovery since historical 2021 low.

Spring to Spring Storage Change

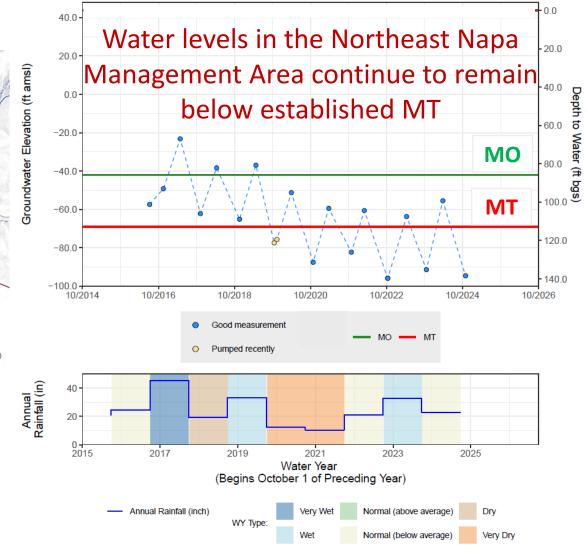
———Cumulative Groundwater Storage Change

Sustainability Indicators & Metrics

Sustainability Indicator Description and Summary



Sustainability	Description of Mo	nitoring	Simplified Summary of Minimum	
Indicator	Parameter	Observed	Modeled	Threshold and Undesirable Result
Chronic GWL Lowering (CGWL)	GW elevations in representative wells.	\checkmark		Based on observed low GW elevation prior to 2015.
Depletion of Interconnected Surface Water (ISW)	GW elevations and model results that equate pumping to streamflow depletion.	\checkmark	\checkmark	Minimum GW elevation from 2005-2014 and second highest seasonal depletion that occurred from 2005-2014.
GW Quality Degradation	Measurements of total dissolved solids (TDS), arsenic, and nitrate.	\checkmark		Based on drinking water standards as well as historical range.
Reduction of GW Storage	Modeled GW extraction.		\checkmark	GW extraction in exceedance of the Sustainable Yield for a single year and the 7- year average.
Land Subsidence	Based on remotely sensed changes in ground surface elevation.	\checkmark		Inelastic subsidence of 0.2 feet per year.
Seawater Intrusion	Measurements of TDS and/or chloride near tidally influenced areas.	\checkmark		Historical maximum chloride concentrations.


Water Levels Measurable Objective and Minimum Threshold – Fall 2024

- Many Representative Monitoring Site (RMS) wells were between the Measurable Objective (MO) and Minimum Threshold (MT).
- Groundwater elevations were mostly slightly lower in Fall WY 2024 compared to Fall WY 2023.
- Exceedances of the MT were located in the Northeast Napa Management Area.

Well Depth: 350 ft. Perforation top & bottom: 180 - 350 ft bgs Subarea: Napa Valley Floor-MST 40.0 20.0 Elevation (ft amsl) 0.0 NapaCounty-76 NapaCounty-243s -20.0 NapaCounty-182 NapaCounty-244d Big Ranch Rd. Groundwater -40.0 NapaCounty-43 -60.0NapaCounty-229 -80.0NapaCounty-122 MST -100.0 -10/2014 10/2016 NAPA VALLEY UBBASIN Trancas St. Northeast Napa Management Area Napa County Groundwater Subarea \circ Fault Location (dashed where approximate Napa Valley Subbasin Groundwater Level Ionitorina Network Representative Monitoring Site 40 Other Monitoring Site 20

Well ID: NapaCounty-229

- Recovery spring-tospring observed in WY 2024.
- NENMA characterized by very thin alluvium bounded by faults.
- Groundwater production from low-permeability volcanic materials.
- Characterized by groundwater level decline.

Minimum Threshold and Measurable Objective Summary: Fall Groundwater Levels

- Groundwater SMC:
 - 2 of 22 wells exceeded the MT
 - NC-122 and NC-229, both in the Northeast Napa Management Area
 - 3 of 22 wells met their MO
- Depletion of ISW groundwater measurements:
 - 0 of 5 wells exceeded their MT
 - 0 of 5 wells met their MO

Chronic Lowering of Groundwater	Minimum Thresholds	Measurable Objective	Fall Groundwater Elevations				
RMS Wells	(ft msl)	(ft msl)	(ft, msl)				
			2020	2021	2022	2023	2024
06N04W27L002M	-2	9	5.4	0.2	3.1	10.2	7.6
NapaCounty-122	-45	-37	-52.4	-54.1	-14.5	-11.6	-56.8
NapaCounty-127	351	374	370.0	380.9	373.9	373.8	373.4
NapaCounty-128	330	331	330.1	335.7	331.2	330.8	331.1
NapaCounty-132	109	115	106.3	100.8	97.3	112.9	111.1
NapaCounty-133	73	75	71.8	73.9	71.0	75.4	73.6
NapaCounty-135	33	62	52.7	17.9	20.9	33.4	37.5
NapaCounty-152	55	61	60.2	67.4	59.5	61.4	58.0
NapaCounty-171	165	173	158.3	208.4	167.3	180.2	
NapaCounty-177	131	136	136.5	139.8	136.7	137.8	137.2
NapaCounty-214s	2	4	3.4	3.7	3.9	4.9	3.8
NapaCounty-215d	2	4	3.2	3.3	3.6	4.4	2.7
NapaCounty-216s	66	75	71.0	65.9	67.9	75.1	74.8
NapaCounty-217d	60	67	59.6	52.5	56.1	65.4	63.0
NapaCounty-218s	29	33	29.0	25.4	27.9	31.7	30.1
NapaCounty-219d	29	33	28.6	23.0	27.5	31.5	30.0
NapaCounty-22	150	170	163.6	162.4	163.3	165.5	165.3
NapaCounty-220s	75	79	74.9	70.6	74.5	77.0	76.0
NapaCounty-221d	75	79	74.2	70.0	74.0	76.8	75.6
NapaCounty-222s	185	191	185.5	182.3	187.1	187.9	186.6
NapaCounty-223d	164	171	156.1	155.8	172.4	169.3	166.9
NapaCounty-227	59	72		38.5	42.8	64.5	85.5
NapaCounty-229	-69	-42	-87.6	-82.3	-95.9	-91.4	-94.6

SMC for Depletion of Interconnected Surface Water: Depletion Volume

Minimum Threshold

Summer/early Fall (June to October) streamflow depletion volumes exceeding the second highest seasonal volume of streamflow depletion that occurred from 2005-2014 at 2 RMS stations on Napa River at Pope St. and Oak Knoll Ave. Based on modeled input and output.

Undesirable Result

Exceedance of MT for volume of streamflow depletion occurring 3 consecutive years at either of above stations. Based on modeled results.

<u>Trigger</u>

Occurs when there is an exceedance of the MT in the Fall for Streamflow Depletion Volume in a <u>single year.</u>

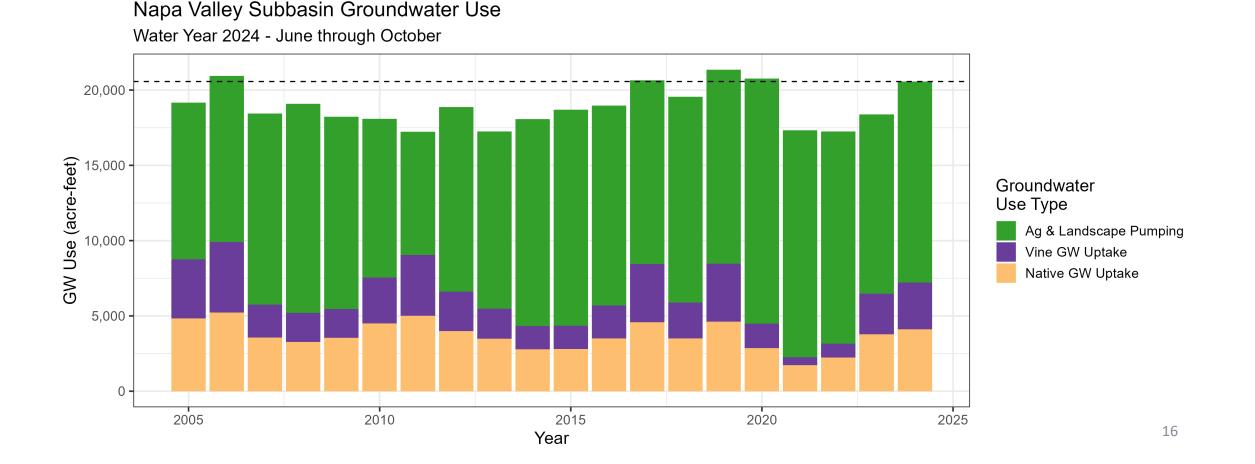
Interconnected Surface Water and Model Results

Seasonal (June to October) Streamflow Depletion Volume Estimated with Model at Stream Sites

	Representative Site		Seasonal Depletion (AF)			WY 2024	Three
Well ID	Minimum Threshold (AF)	Measurable Objective (AF)	WY 2022	WY 2023	WY 2024	MT Exceedance	Consecutive WY MT Exceedances
Napa River at Oak Knoll Avenue, Napa	3,220	2,370	1,140	3,680	3,240	Yes	Νο
Napa River at Pope Street, St. Helena	1,390	1,120	690	1,370	1,490	Yes	No

- Streamflow depletion volume conditions <u>did not meet</u> the definition for an undesirable result.
- In WY 2024, groundwater elevations <u>did not</u> meet the definition for an undesirable result.

Why did the seasonal depletion of the river system exceed the MT in 2024?


- The extremely hot summer increased the total consumptive use of all vegetation.
- High Spring groundwater elevations supported direct groundwater uptake of plants (both vines and native vegetation).
- Pumping was above the Sustainable Yield of 15,000 AFY.

Interconnected Surface Water and Model Results

- While Ag & Landscape Pumping were greater in WY 2024, direct uptake by crops and native vegetation also increased largely based on hotter, drier conditions.
- During the June-October period, WY 2024 had one of the highest total groundwater uses.

Stream Depletion in WY 2024

Start of WY 2024

- Began WY with high water levels from prior Wet Water Year.
- Cool winter and spring temperatures led to low demand.
- Consistent precipitation throughout the winter maintained high groundwater levels.
- Increased streamflows produced by multiple factors going into Summer 2024.

High streamflows and low demand preceding the 2024 irrigation season.

June/July - WY 2024

- Extremely hot temperatures increased overall demand.
- High groundwater levels allowed for additional direct root uptake throughout the Subbasin (both native and vines).
- Increased pumping to meet demand.

August/October - WY 2024

- Groundwater levels fall below root zone for majority of native and vines.
- Increased pumping to meet demand.
- No significant storm in October to increase streamflow and begin aquifer recharge.

Overall groundwater use (pumping and direct uptake) was much higher during this time compared to many other years. More streamflow was available for depletion. Cumulative effect of pumping and direct uptake led to 100% depletion.

Reduction of Groundwater Storage

Minimum Threshold

Net GW extraction by pumping exceeding the SY for the Subbasin, where net GW extraction is the volume extracted less any volume of augmented recharge achieved by implemented projects.

Undesirable Result

Seven (7) year average annual net GW extraction in the Subbasin exceeds the sustainable yield.

UR occurred since 7-year average exceeds the sustainable yield for the Subbasin.

PLIFORHIP

Sustainable Yield (Est.) = ~15,000 AFY

Year	Total Groundwater Extraction (AF)
2018	17,750
2019	14,140
2020	19,310
2021	22,550
2022	18,840
2023	15,100
2024	16,200
7 Year Avg.	17,700

Six of seven years exceeded the SY. Many GW levels were between the MT and MO in WY 2024. To achieve the Sustainability Goal by 2042, of protecting and enhancing, as well as preparing for more extreme climate, requires augmented recharge and less pumping.

Water Quality, Seawater Intrusion, and Subsidence

Water Quality:

• Two RMS wells exceeded the MT for Arsenic – historically detected in the Napa Valley Subbasin.

Seawater Intrusion:

• High TDS in the tidally influences area of the Napa Valley Subbasin, as expected.

Subsidence:

• No measurable impact of subsidence or concern.

All monitoring networks are being continually reviewed and updated as needed.

Sustainability Indicator Summary of Undesirable Results

- Average GW pumping over 7-year period exceeds Sustainable Yield
 - UR occurred for Reduction of GW Storage

Sustainability	WY 2022	WY 2023	WY 2024	
Indicator	UR: Yes or No	UR: Yes or No	UR: Yes or No	
Chronic GWL Lowering (CGWL)	Νο	Νο	Νο	
Depletion of Interconnected Surface Water (ISW)	Yes	Νο	Νο	
GW Quality Degradation	Νο	Νο	Νο	
Reduction of GW Storage	Yes	Yes	Yes	
Land Subsidence	Νο	Νο	Νο	
Seawater Intrusion	No*	No*	Νο	
			20	

*New RMS wells are being evaluated for this SI.


GSP Implementation

GSP Projects and Management Actions (PMAs)

- Sustainable groundwater management required within 20 years
 - 2040 (critically overdrafted basins) and 2042 (non-critically overdrafted basins)
- Must **achieve the sustainability goal** for the basin
- Must **annually describe progress** towards GSP implementation

Sustainable Groundwater Management Act Portal Projects and Management Actions Module User Manual

New Online Portal : 2025

Workplan Implementation: Water Conservation and Groundwater Pumping Reduction Groundwater Groundwater 10% Replenishment/ Pumping Other GSP Reduction Projects **Program Components & Voluntary Actions** (Individual Choice to Participate in Some or All) MA1: Water Conservation P2: Expand Recycled P1: Aquifer Recharge GSA & Stakeholders MA2: GW Pumping Reduction Water Use Education Urban & Rural Soil Health/ Landscape 000 & Outreach Conservation Cover Crops Irrigation Local Certification Best Management Practices Best Management Practices Best Management Practices Partnerships (e.g., irrigation efficiency) (e.g., onsite treatment & resuse) (e.g., increase infiltration) Conservation Apply Retain On-farm Vineyard \odot [6/-Incentives Technologies Stormwater Irrigation \mathfrak{O} Water Use Data; Capture/Reuse Dry Farm Supplemental *____* Water Use Ø A Benchmarking Tracking Tile Drain Stormwater Water Source

Sustainability Goal Achieved through **Collective Community Actions?** YES NO Local Control

Continue Voluntary Efforts

ŵ

Conservation

Initiatives

Extended Time to

Vineyard Replanting

Agriculture Innovations

& Influencers

Conservation

Nudging

State Control Mandatory Measures

Stormwater Storage/

In Lieu Use

Winter

Recharge

靈

Recycled Water Storage/

In Lieu Use

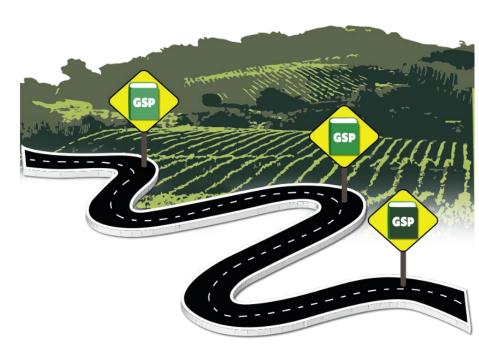
Fallow Acreage

Recharge

`儞Ъ

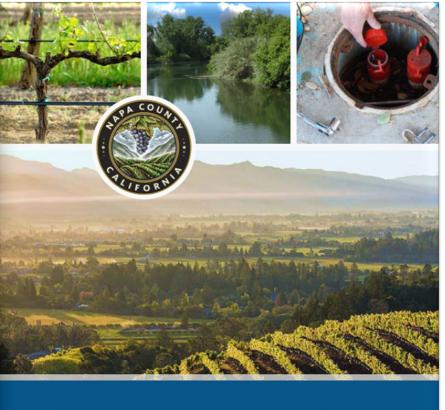
Water Certification Partnership

- Water Certification Partnership
 - Outreach to Existing Certification Programs and Other Stakeholders
 - Completed Concept Document
 - Many Meetings with TAG, including April 10
- More Outreach with Stakeholders
 - Flyers: Partnering Organizations, Interested Stakeholders, FAQs
- Next Steps
 - RFQ and/or Pilot Sites for Interested Organizations
 - Participation Incentives



Other Ongoing GSP Implementation

- ISW and GDEs Workplan (Spring 2024)
 - GDEs monitoring at 6 stream sites
- Refining Water Use Data, Benchmarking, NVIHM Model Updates
 - Comparing OpenET and Local Land-Based Sensors
- Stream Gage Monitoring
 - CalSIP funding awarded for 5 new stream gages
 - Stage monitoring at additional sites
- Additional Monitoring Wells (Calistoga)
- RCD and Stream Watch Monitoring
- Evaluating Recharge Feasibility & Benefits
- Stakeholder Coordination and Outreach


PPA COUNIZ COUNIZ COUNIZ COUNIZ COUNIZ COUNIZ

DWR Approved Napa Valley Subbasin GSP January 26, 2023

Stakeholder Outreach and Education

- Extensive Outreach Efforts in WY 2024
- Annual Report WY 2024
 - 966 pages; 11 Appendices
- Public-Friendly Executive Summary

NAPA COUNTY GROUNDWATER SUSTAINABILITY Annual Report – Water Year 2024

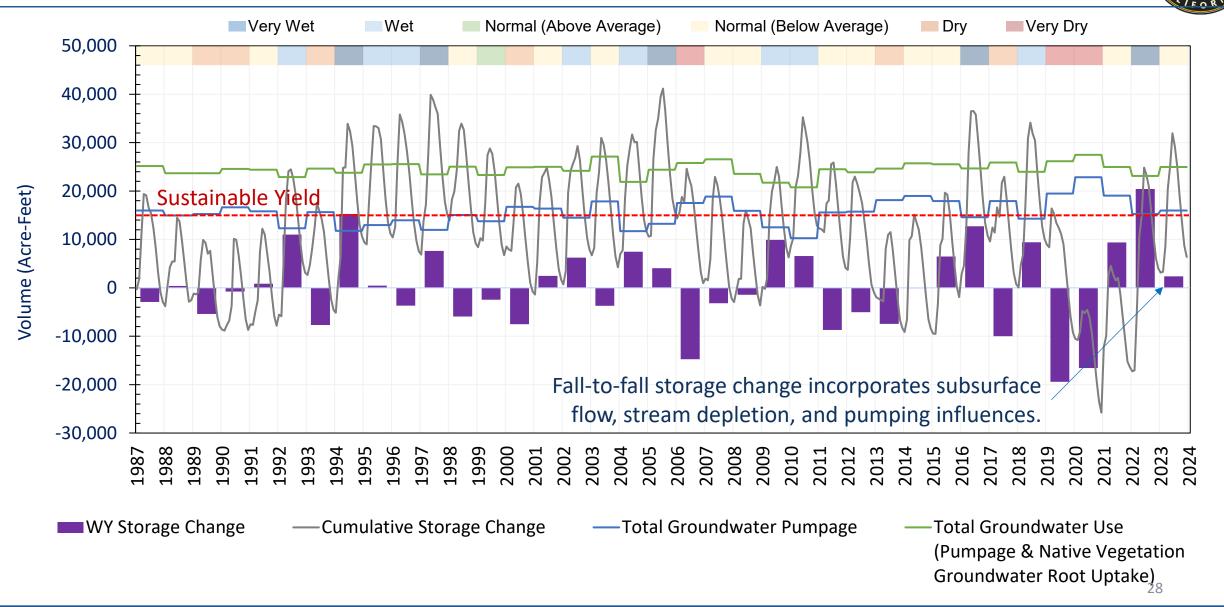
EXECUTIVE SUMMARY

March 2025

Thank You

Cab M. Esposito Luhdorff & Scalmanini, C. E. <u>cesposito@lsce.com</u> (916) 471-4201 Vicki Kretsinger Grabert Luhdorff & Scalmanini, C. E. vkretsinger@lsce.com (530) 661-0109

Napa County Groundwater Sustainability Agency


Jamison Crosby, Natural Resources Conservation Manager

Planning, Building, and Environmental Services Department 1195 Third Street Suite 210 Napa, CA 94559 jamison.crosby@countyofnapa.org

Ryan Alsop, *Executive Officer* Napa County Groundwater Sustainability Agency 1195 Third Street Napa, CA 94559 Brian Bordona, *Director* Planning, Building, and Environmental Services Department 1195 Third Street Napa, CA 94559

GW Pumping, Total Use, fall-to-fall GW Storage Change, and Cumulative GW Storage Change (1988-2024)

Interconnected Surface Water and GDEs Workplan Implementation; California Environmental Flows Framework (CEFF)

Modeling and Monitoring

- Biological
- Hydrology
- Model update and scenarios

CEFF Analysis (ecological goals needs)

2025

- Ecological Goals
- Flow Requirements

TECHNICAL MEMORANDUM · MARCH 2025 Napa Valley Subbasin Interconnected Surface Water and Groundwater Dependent Ecosystems Monitoring, 2024

2024

Sustainable Management Criteria

2026

 Balance with other beneficial users and SGMA regulations

> GSP Periodic Evaluation (January 2027)