

“H”

Water Availability Analysis  
Duckhorn Vineyards Winery Major  
Modification  
P19-00097-MOD

Duckhorn Vineyards Winery Use Permit Major Modification  
P19-00097-MOD  
Planning Commission Hearing – May 3, 2023

**TIER 1**  
**WATER AVAILABILITY ANALYSIS FOR**  
**DUCKHORN VINEYARDS WINERY**  
**1000 LODI LANE & 1098 LODI LANE, ST. HELENA, CA 94574**  
**APNs 022-130-010 (SFAP) & 022-100-033 (SFAP)**

---

As required by Napa County Planning, Building, and Environmental Services (PBES), this analysis outlines the existing and proposed water use for the expansion of an existing winery located at 1000 and 1098 Lodi Lane, St. Helena, CA 94574.

**PROJECT DESCRIPTION**

The  $30.34\pm$  acre parcel is currently developed with an existing winery (fermentation buildings, barrel buildings, a hospitality building, and covered outdoor work areas), vineyards, access roads, parking lots, wells, agricultural buildings, and a residence. The existing winery is located on APN 022-130-010 (SFAP)<sup>1</sup>, is  $10.67\pm$  acres, and is planted with  $4.06\pm$  acres of vineyard while the existing residence is on APN 022-100-033 (SFAP)<sup>1</sup>, is  $19.67\pm$  acres, and is planted with  $10.15\pm$  acres of vineyard. The project proposes the demolition of four (4) winery buildings and the residence, construction of a new production facility and an addition to the existing hospitality building, and to increase the annual wine production. While the existing winery on APN 022-130-010 (SFAP) will remain and continue producing wine, the construction of a new production facility on APN 022-100-033 (SFAP) is proposed because it is the intent of this project to increase the total production capability from 160,000 to 300,000 gallons of wine per year. A reduction in vineyard area is anticipated as a result of the project. Refer to the Use Permit Drawings prepared by Bartelt Engineering for the details of the existing and proposed development conditions.

The approved number of 56 employees, which includes 45 full-time employees, five (5) part-time employees, and six (6) harvest/seasonal employees is proposed to remain constant; however, along with the proposed physical improvements and production increase described previously, the project proposes a modification to the winery's current visitation plan. The project proposes to increase both private tour and tasting without food and private tour and tasting with food appointments to a maximum number of 110 and 109 guests per day, respectively, with an average of 770 guests per week. The project also proposes to adjust the current marketing plan to offer 40 small private wine and food pairings each year for parties up to 25 guests with two (2) additional event staff and 200 small private tastings per year for groups of up to 20 guests. In addition, the marketing plan will be adjusted to accommodate 40 medium events per year for groups of up to 60 guests, one (1) auction event per year for groups of up to 250 guests, and three (3) large events per year for groups of up to 400 guests with additional staff for each event type of up to two (2), five (5), and eight (8), respectively.

---

<sup>1</sup> Separated for Assessment Purposes (SFAP).

## EXHIBITS

The USGS “Topographic Site Location Information” exhibit shows the project site, approximate property line locations, and topographic features while information regarding existing structures and the wells on the parcel are shown on the Use Permit Drawings provided in the Use Permit Modification application package. A “Well Location Exhibit” is provided with this analysis that displays approximate parcel lines and the location of existing wells and structures on and around the subject parcel. All exhibits and drawings mentioned above were prepared by Bartelt Engineering.

## WATER USE CRITERIA

**TABLE 1: SCREENING CRITERIA**

|                                           |                                                                                                                               |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Parcel Zoning                             | Agricultural Preserve (AP)                                                                                                    |
| Project Parcel Location                   | Napa Valley Floor                                                                                                             |
| Parcel Size                               | APN 022-130-010 (SFAP) <sup>1</sup> 10.67± acres<br>APN 022-100-033 (SFAP) <sup>1</sup> 19.67± acres<br>Combined 30.34± acres |
| Water Use Criteria (Pre-Executive Order)  | 1.0 acre-feet per acre per year                                                                                               |
| Water Use Criteria (Post-Executive Order) | 0.3 acre-feet per acre per year                                                                                               |
| Well and Spring Interference              | None Anticipated                                                                                                              |
| Groundwater/Surface Water Interaction     | None Anticipated                                                                                                              |
| Screening Tier                            | Tier 1                                                                                                                        |

As summarized in Table 1, the subject parcel is located within the Agricultural Preserve (AP) Zoning District on the Napa Valley Floor. Per the PBES Water Availability Analysis (WAA)-Guidance Document dated May 12, 2015, the water use criteria for a parcel located in the Napa Valley Floor and/or All Other Areas that are not designated as a groundwater deficient area without any well or spring interference must follow Tier 1 requirements. Furthermore, a Tier 2 well interference analysis need only be conducted when “substantial evidence in the record indicates the need to do so under California Environmental Quality Act (CEQA).”<sup>2</sup>. At the request of Napa County Planning, Building, and Environmental Services Division, a Tier 2 and Tier 3 Water Availability Analysis was prepared by Wagner & Bonsignore and has subsequently been submitted to Napa County.

<sup>1</sup> Separated for Assessment Purposes (SFAP).

<sup>2</sup> From Table 2A from the Napa County *Water Availability (WAA) - Design, Construction and Guidance Document*.

## SOURCE WATER INFORMATION

There are five (5) existing onsite wells maintained on the Duckhorn Vineyards Winery parcel. A description of each water source is summarized below:

- Water Well “Domestic Well #1” (Public Water System ID# CA2800024) is the well for domestic water use. “Domestic Well #1” is located on APN 022-130-010 (SFAP) north of Chai 7.
- Water “Well #4” is the primary well for irrigation water use on APN 022-130-010 (SFAP). “Well #4” is in the southwest corner of APN 022-130-010 (SFAP) near Lodi Lane.
- Water “Well #1” and “Well #3” are currently out of service and are planned to be destroyed under the proposed project. These two (2) wells are located on APN 022-100-033 (SFAP) east of the existing pond and approximately in the middle of the parcel.
- Water “Well #2” is currently used for domestic (residential) water use and vineyard irrigation on APN 022-100-033 (SFAP). This well is located on APN 022-100-033 (SFAP) and in-between “Well #1” and “Well #3”.

Refer to the Technical, Managerial, and Financial (TMF) Capacity worksheet for additional information on the existing public water system (PWS) and proposed modifications included with the Use Permit Modification Application.

### **Well Description**

According to the Well Completion Report (No. 462651) signed and dated on January 1, 1995, Pulliam Well Drilling completed “Domestic Well #1” on December 12, 1994. “Domestic Well #1” is reported to be constructed of five (5) inch diameter 200 gage plastic pipe to a completed depth of 460 feet with a 56 foot grout annular seal. Refer to the attached Water Completion Report for more information. Under the proposed conditions, “Domestic Well #1” will continue to supply water to the public water system.

According to the Water Well Drillers Report (No. 122286) dated June 17, 1975, work was completed on “Well #4” on June 16, 1975. “Well #4” is reported to be constructed of eight (8) inch diameter 250 gage steel pipe to a completed depth of 200 feet with a 20 foot grout annular seal. Refer to the attached Water Well Drillers Report for more information. Under the proposed conditions, “Well #4” will continue to supply water to the landscaping and vineyards on APN 022-130-010 (SFAP).

Three (3) Applications & Permits to Construct a Water Well were obtained for “Well #1”, “Well #2”, and ‘Well #3” drilled on APN 022-100-033 (SFAP) but it is unclear at this time which report is associated with which well. The documents show that all three (3) wells were drilled within a three month period but do not provide enough information to discern one well from another. It is not proposed that any of these wells will supply water to the PWS. Refer to the attached Water Completion Reports for more information.

## **Well Yield Test**

“Domestic Well #1” is rated at  $115\pm$  gallons per minute (gpm), discharges to the potable water treatment equipment, and into a 32,000 combined domestic and fire water storage tank. Refer to the attached Water Well Drillers Report for more information.

“Well #2” supplies water to the existing residence, landscaping, and vineyards on APN 022-100-033 (SFAP). The existing residence is proposed to be demolished under the proposed project. “Well #2” will continue to supply water to the existing vineyards on APN 022-100-033 (SFAP).

“Well #4” currently supplies water to the existing landscaping and vineyards on APN 022-130-010 (SFAP). “Well #4” will remain as the exclusive source of irrigation water on APN 022-130-010 (SFAP).

The remaining two (2) existing wells, “Well #1” and “Well #3” located on APN 022-100-033 (SFAP) are currently out of service and are planned to be destroyed under the proposed project.

## **Water System Classification**

The existing water system on APN 022-130-010 (SFAP) is permitted as a state regulated Public Water System (PWS)<sup>3</sup> that is classified as “noncommunity” because it does not serve 25 or more yearlong residents<sup>4</sup> with less than 15 service connections<sup>5</sup>. Furthermore, the water system is also classified as “non-transient” because it serves 25 or more of the same people at least six (6) months of the year. The water system classification of nontransient noncommunity water system (NTNCWS) will not change as part of this Use Permit Modification Application.

Based on staffing needs, all hospitality employees and some of the winery employees will continue to work at the existing winery on APN 022-130-010 (SFAP) with the remaining number of production employees working at the proposed production facility on APN 022-100-033 (SFAP). It is our understanding that the existing PWS will be expanded to include the proposed production facility on APN 022-100-033 (SFAP) and to provide domestic water to the facility via a directional bore under the Napa River.

## **Neighboring Water Source(s)**

Based on a review of neighboring property records at Napa County PBES, an existing neighboring well located on APN 021-351-001 is located on the edge of a 500 foot radius relative to the project well. It is not anticipated that the project well will have any influence on the neighboring well.

Refer to the attached “Well Location Exhibit” prepared by Bartelt Engineering for the locations of the existing onsite and neighboring water well sources.

---

<sup>3</sup> The public water system source code number is CA2800024; refer to the public water system permit for additional information

<sup>4</sup> A yearlong resident must be served by the water system for at least 183 days per year

<sup>5</sup> Service connection means the point of connection between the user's piping or constructed conveyance, and the water system's meter, service pipe, or constructed conveyance.

## **Water Quality**

Water quality results were not available for the irrigation wells prior to completion of this WAA. Water quality results for the “Domestic Well #1” that provides water to the NTNCWS were not reviewed by Bartelt Engineering because it is assumed the water system complies with all Federal, State, and local laws governing public water systems. Annual Consumer Confidence Reports (CCRs) have been submitted to the State and/or County and can be reviewed by either contacting the California State Water Resources Control Board (SWRCB) Division of Drinking Water (DDW) District Office or the Local Primacy Agency (LPA), which in this case is the Napa County Environmental Health Division Consumer Protection Team.

## **GROUNDWATER SUBAREA**

According to the Napa County Watershed Information & Conservation Council (WICC), the subject parcel is located within the Napa Valley Floor – Calistoga groundwater subarea which resides within the Napa River Watershed. The Calistoga groundwater subarea of the Napa Valley Floor consists of  $8,950 \pm$  acres.

## **WATERSHED INFORMATION**

The subject parcel is located within the Upper St. Helena Reach of the Napa River Watershed which is not considered a municipal watershed or a water deficient area. The Napa River - Upper St. Helena Reach consists of  $1,984 \pm$  acres.

## **GEOLOGICAL FEATURES**

According to the WICC Soil and Geology Map, the subject parcel and surrounding areas' geology appears to be Surficial Deposits. The United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Custom Soil Resource Report identifies the following (map unit symbol) soil names (103) Bale loam, 0-2 percent slopes, (104) Bale clay loam, 0-2 percent slopes, (140) Forward silt loam, 12-57 percent slopes, and (141) Forward-Kidd complex, 11-60 percent slopes, being present on and around the parcel.

## **WATER DEMAND**

### **Estimated Water Usage**

This project proposes to beneficially reuse treated winery process wastewater for vineyard irrigation and heat protection on parcel APN 022-100-033 (SFAP)<sup>6</sup>. This beneficial reuse would potentially reduce the proposed water demand by 4.65 ac-ft per year.

The total estimated water usage for the existing and proposed uses for the project is calculated based on the *Guidelines for Estimating Residential and Non-residential Water Use* from the WAA Guidance Document (2015) and are summarized in Table 2: Existing Water Demand and Table 3: Proposed Water Demand below.

---

<sup>6</sup> Refer to the Onsite Wastewater Dispersal Feasibility Study for Duckhorn Vineyards Winery prepared by Bartelt Engineering and submitted in conjunction with the Use Permit Modification application.

**TABLE 2: EXISTING WATER DEMAND**

| Category                            | Estimated Water Usage<br>(acre-feet/year) |
|-------------------------------------|-------------------------------------------|
| Primary Residence                   | 0.75                                      |
| Vineyard (15.67 ± acres)            | 7.84                                      |
| Winery (Production and Hospitality) | 5.45                                      |
| Total Existing Demand =             | 14.04±                                    |

**TABLE 3: PROPOSED WATER DEMAND**

| Category                            | Estimated Water Usage<br>(acre-feet/year) |
|-------------------------------------|-------------------------------------------|
| Vineyards (12.12 ± acres)           | 4.19                                      |
| Winery (Production and Hospitality) | 9.81                                      |
| Total Proposed Demand =             | 14.0±                                     |

As shown in Table 2 and Table 3, the proposed water demand is estimated to remain the same or be less than existing. Refer to attached Table I Existing Water Demand and Table III Proposed Water Demand-TPW Reuse for a detailed accounting of the existing and proposed water demand calculations.

#### **Allowable Water Allotment (Pre-Executive Order)**

Per *Table 2A: Water Use Criteria* from the WAA Guidance Document (2015), the water use criteria for a parcel located within the “Napa Valley Floor” area is defined as 1.0 acre-feet per acre per year. The allowable groundwater allotment based on Napa County Requirements for the subject parcel is calculated below.

$$\begin{aligned}
 \text{Allowable Water Allotment} &= \frac{\text{Napa Valley Floor parcel area}}{\text{(acres)}} \times \text{Water Use Criteria} \\
 &= \frac{32.34 \pm \text{ acres}}{\text{(acre-feet per acre per year)}} \times 1.0 \text{ acre-feet per acre per year} \\
 &= 32.34 \pm \text{ acre feet per year}
 \end{aligned}$$

The allowable pre-executive order water allotment for the subject parcel is estimated to be 32.34± acre-feet per year.

### **Allowable Water Allotment (Post-Executive Order)**

*Post-Executive Order*, the water use criteria for a parcel located within the “Napa Valley Floor” area is defined as 0.3 acre-feet per acre per year. The allowable groundwater allotment based on Napa County *Executive Order* for the subject parcel is calculated below.

$$\begin{aligned}\text{Allowable Water Allotment (acre-feet per year)} &= \frac{\text{Napa Valley Floor parcel area (acres)}}{\text{Water Use Criteria (acre-feet per acre per year)}} \\ &= \frac{32.34 \pm \text{ acres}}{0.3 \text{ acre-feet per acre per year}} \\ &= 9.7 \pm \text{ acre feet per year}\end{aligned}$$

The allowable post-executive order water allotment for the subject parcel is estimated to be  $9.7 \pm$  acre-feet per year.

### **SUMMARY**

The groundwater demand generated as a result of the proposed winery expansion, that includes an increase in production and marketing, is estimated to remain the same when the benefits of reusing treated process wastewater as irrigation and heat protection is utilized. The volume of groundwater used to satisfy irrigation demand for the onsite vineyards will decrease while the volume used to satisfy domestic water demand will increase. Vineyard irrigation will be sourced from the many existing onsite wells which have various reported yield rates in addition to utilizing beneficial reuse of reclaimed treated winery process wastewater. “Domestic Well #1” will supply the existing NTNCWS and satisfy the domestic water demands of the proposed uses at the existing production facility and hospitality (Estate House and addition) buildings and will be expanded to include APN 022-100-033 (SFAP) where the new production facility is proposed. The proposed project estimates water demand to be  $14.0 \pm$  acre-feet per year which is less than or equal to the existing water demand.

### **CONCLUSION**

The preceding analysis shows that there is no net increase in groundwater demand from the proposed project and satisfies the Tier 1 Water Use Criterion of the Napa County Water Availability Analysis.

### **ATTACHMENTS**

USGS Map

Well Location Exhibit

Table I – Existing Water Demand

Table III – Proposed Water Demand- TPW Reuse

(3) Application & Permits to Construct A Water Well

Water Well Drillers Report

Well Completion Report

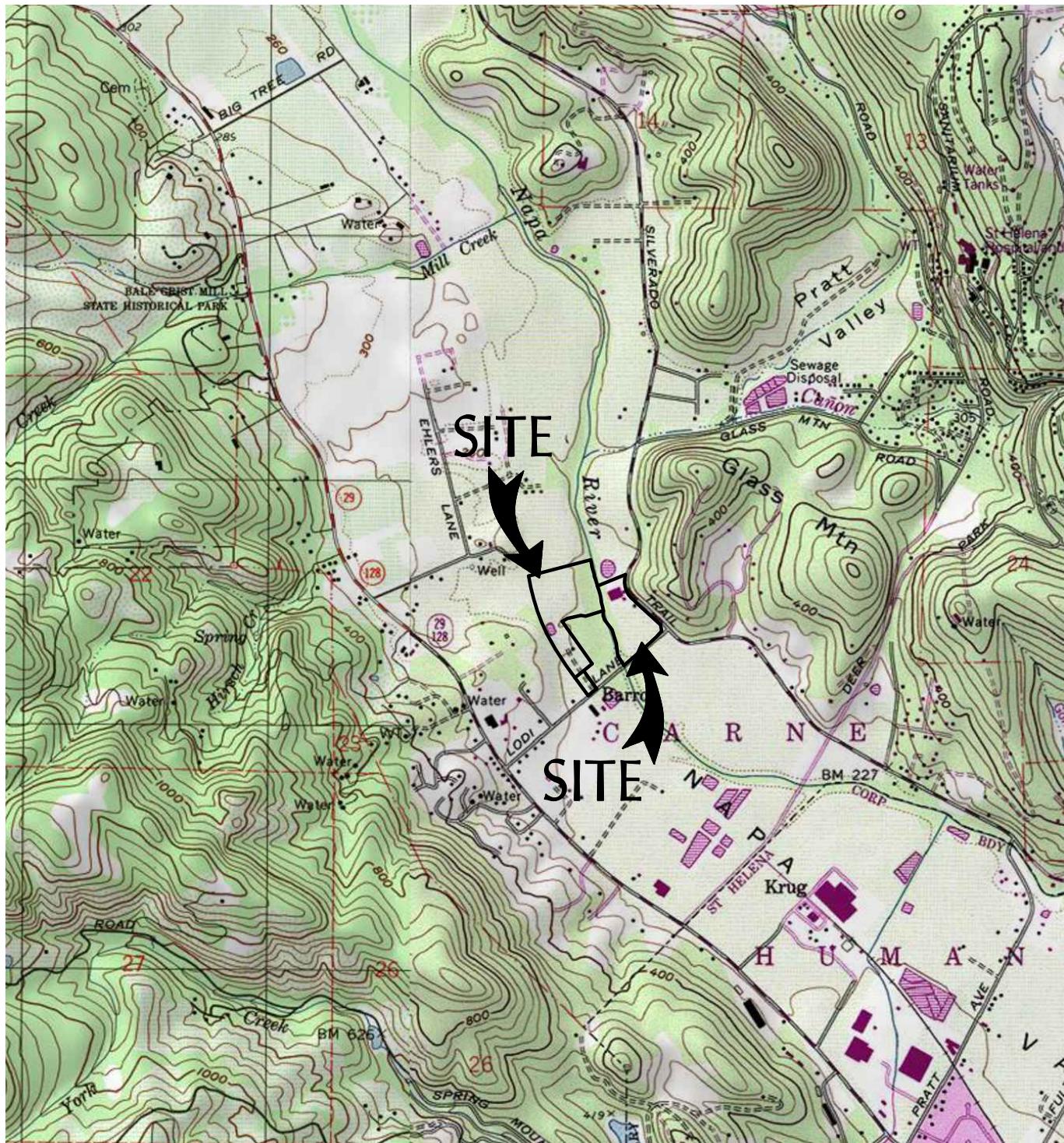
**REFERENCES**

Luhdhorff & Scalmanini Consulting Engineers and MBK Engineers. January 2013. Updated Hydrogeological Conceptualization and Characterization of Conditions Prepared for Napa County.

Luhdhorff & Scalmanini Consulting Engineers. 2017, March. Napa County Comprehensive Groundwater Monitoring Program 2016 Annual Report and CASGEM Update. Prepared for Napa County.

Napa County. 2015, May 12. Water Availability Analysis (WAA) - Design, Construction and Guidance Document.

Napa County Watershed Information & Conservation Council (WICC). (n.d.). Retrieved from [www.napawatershed.org](http://www.napawatershed.org)

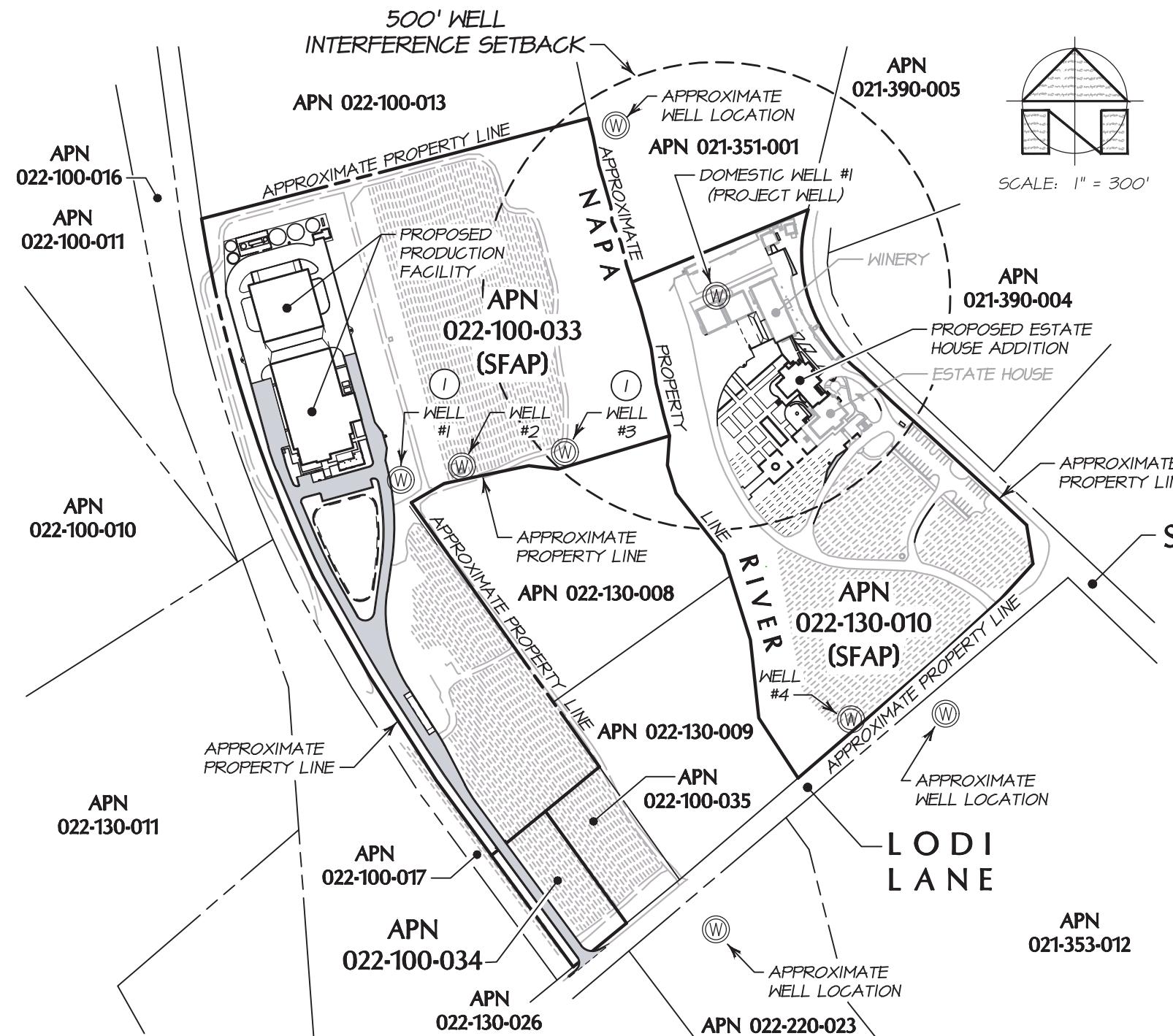

USDA NRCS Custom Soil Resource Report for Napa County, California Duckhorn Vineyards.

## TOPOGRAPHIC SITE LOCATION INFORMATION



# USGS 7.5 MINUTE QUADRANGLE "SAINT HELENA"

Scale: 1" = 2000'




R. 6 W.

Duckhorn Vineyards Winery  
1000 & 1098 Lodi Lane  
St. Helena, California  
APNs 022-130-010, 022-100-033 & -034  
Job No. 13-14



4/18/2022 - 1:51 PM, KellyP, S:\LAND PROJECTS\2013-2017\314\2017 USE PERMIT\ACAD\EXHIBITS\314-WELL.DWG



# WELL LOCATION EXHIBIT PROPOSED CONDITIONS

SCALE: 1" = 300'

### NOTE

1 WELLS #1 AND #3 TO BE  
DESTROYED UNDER THE  
PROPOSED PROJECT.



Duckhorn Vineyards Winery  
1000 & 1098 Lodi Lane  
St. Helena, CA 94574  
130-010, 022-100-033 & -034  
Job No. 1314  
August 2022  
Sheet 1 of 1

The logo for Bartelt Engineering features the company name in large, bold, black, sans-serif letters. Below the name, the words "CIVIL ENGINEERING · LAND PLANNING" are written in a smaller, bold, black, sans-serif font. At the bottom, the company's address "1303 Jefferson Street, 200 B, Napa, CA 94559" is listed in a smaller, black, sans-serif font. To the right of the address is the company's website "www.bartelengineering.com" and a telephone number "Telephone: 707-258-1301".

© COPYRIGHT 2022. ALL RIGHTS RESERVED



**TABLE I - EXISTING WATER DEMAND**

| <b>Description</b>                            | <b>Water Usage Rate<sup>1</sup></b>   | <b>Water Demand<br/>(acre-feet/year)</b> |
|-----------------------------------------------|---------------------------------------|------------------------------------------|
| <u>Residential</u>                            |                                       |                                          |
| Primary Residence                             | 0.75 acre-feet/acre-year              | 0.75                                     |
| Secondary Residence or<br>Farm Labor Dwelling | acre-feet/acre-year                   | -                                        |
| <u>Agricultural</u>                           |                                       |                                          |
| Vineyards                                     |                                       |                                          |
| Irrigation Only                               | 0.50 acre-feet/acre-year              | 7.84                                     |
| Heat Protection                               | 0.25 acre-feet/acre-year              | 0.00                                     |
| Frost Protection                              | 0.25 acre-feet/acre-year              | 0.00                                     |
| Irrigated Pastures                            | 4 acre-feet/acre-year                 | 0.00                                     |
| Orchards                                      | 4 acre-feet/acre-year                 | 0.00                                     |
| Livestock (sheep or cows)                     | 0.01 acre-feet/acre-year              | 0.00                                     |
| <u>Winery</u>                                 |                                       |                                          |
| Process Water                                 | 2.15 acre-feet/100,000 gallon of wine | 3.44                                     |
| Domestic & Landscaping                        | 0.50 acre-feet/100,000 gallon of wine | 0.80                                     |
| Employees                                     | 15 gallons per shift                  | 0.70                                     |
| Tasting Room Visitation                       | 3 gallons per visitor                 | 0.27                                     |
| Events and Marketing, with onsite<br>catering | 15 gallons per visitor/event staff    | 0.24                                     |
| <u>Industrial</u>                             |                                       |                                          |
| Food Processing                               | 31.00 acre-feet/employee-year         | 0.00                                     |
| Printing/Publishing                           | 0.60 acre-feet/employee-year          | 0.00                                     |
| <u>Commercial</u>                             |                                       | -                                        |
| Office Space                                  | 0.01 acre-feet/employee-year          | 0.00                                     |
| Warehouse                                     | 0.05 acre-feet/employee-year          | 0.00                                     |

*Estimated Existing Water Demand (acre-feet/year):* 14.04

*Estimated Existing Water Demand (gallons/year):* 4,574,948

1) Water usage rates referenced from *Appendix B: Estimated Water Use of Specified Land Use* from Napa County WAA-Guidance Document (2015) unless noted otherwise

**TABLE III - PROPOSED WATER DEMAND-TPW REUSE**

| <b>Description</b>                         | <b>Water Usage Rate<sup>1</sup></b>   | <b>Water Demand<br/>(acre-feet/year)</b> |
|--------------------------------------------|---------------------------------------|------------------------------------------|
| <u>Residential</u>                         |                                       |                                          |
| Primary Residence                          | 0.75 acre-feet/acre-year              | 0.00                                     |
| Secondary Residence or Farm Labor Dwelling | acre-feet/acre-year                   | -                                        |
| <u>Agricultural</u>                        |                                       |                                          |
| Vineyards                                  |                                       |                                          |
| Irrigation Only <sup>2</sup>               | 0.50 acre-feet/acre-year              | 2.32                                     |
| Heat Protection <sup>2</sup>               | 0.25 acre-feet/acre-year              | 1.87                                     |
| Frost Protection                           | 0.25 acre-feet/acre-year              | 0.00                                     |
| Irrigated Pastures                         | 4 acre-feet/acre-year                 | 0.00                                     |
| Orchards                                   | 4 acre-feet/acre-year                 | 0.00                                     |
| Livestock (sheep or cows)                  | 0.01 acre-feet/acre-year              | 0.00                                     |
| <u>Winery</u>                              |                                       |                                          |
| Process Water                              | 2.15 acre-feet/100,000 gallon of wine | 6.45                                     |
| Domestic & Landscaping                     | 0.50 acre-feet/100,000 gallon of wine | 1.50                                     |
| Employees                                  | 15 gallons per shift                  | 0.70                                     |
| Tasting Room Visitation                    | 3 gallons per visitor                 | 0.74                                     |
| Events and Marketing, with onsite catering | 15 gallons per visitor/event staff    | 0.42                                     |
| <u>Industrial</u>                          |                                       |                                          |
| Food Processing                            | 31.00 acre-feet/employee-year         | 0.00                                     |
| Printing/Publishing                        | 0.60 acre-feet/employee-year          | 0.00                                     |
| <u>Commercial</u>                          |                                       |                                          |
| Office Space                               | 0.01 acre-feet/employee-year          | 0.00                                     |
| Warehouse                                  | 0.05 acre-feet/employee-year          | 0.00                                     |

*Estimated Proposed Water Demand-TPW Reuse (acre-feet/year):* 14.00  
*Estimated Proposed Water Demand-TPW Reuse (gallons/year):* 4,561,914

- 1) Water usage rates referenced from *Appendix B: Estimated Water Use of Specified Land Use* from Napa County WAA-Guidance Document (2015)
- 2) Includes 4.65 ac-ft of Treated Process Wastewater (TPW) as irrigation and heat protection reuse reduction.

HEALTH DEPT. USE ONLY  
FEE: 83.00  
DATE: 6-5-74  
RECEIPT NO: 1165  
BY: Vehicle Owner

RECEIVED A.P. # 77-100-14

NAPA COUNTY HEALTH DEPARTMENT  
DIVISION OF ENVIRONMENTAL HEALTH

JUL 15 1974

APPLICATION & PERMIT TO CONSTRUCT

A WATER WELL  
(ORDINANCE #)

DIVISION OF  
ENVIRONMENTAL HEALTH

NAME \_\_\_\_\_ ADDRESS \_\_\_\_\_ DATE 6-5-74

NAME Keshell & Yeran (Owner) ADDRESS Maple Valley Hwy.  
(Well Driller)

TYPE OF WORK      NEW WELL  RECONDITIONING \_\_\_\_\_ DEEPENING \_\_\_\_\_  
TEST HOLES  DESTROYING \_\_\_\_\_ OTHER \_\_\_\_\_  
TYPE I PERMIT  TYPE II PERMIT \_\_\_\_\_ FEE \_\_\_\_\_

PROPOSED USE      DOMESTIC  IRRIGATION  INDUSTRIAL  MUNICIPAL

Sewage Disposal On Site (Existing or Proposed) Public  Individual  Private   
Distance from well to any part of nearest sewage disposal system  feet.  
(Sketch of site to accompany application.)

None

TYPE OF EQUIPMENT TO BE USED      Rotary  Cable  Hand Dug  Other

CONSTRUCTION PROPOSED      Diameter of casing 12" Material Steel Annular Space: Size 3"  
Sealed with: Concrete  Grout  Neat Cement  Puddled Clay  Other   
Conductor Casing: Yes  No  Material   
Chlorination By: Owner  Pump Co  Driller

Parley Brown

(SIGNATURE OF APPLICANT)

6/15/74

(DATE)

NOTICE TO DRILLER: COMPLETE THIS PORTION AND PROVIDE OWNER WITH THIS COPY.

CASING

CONSTRUCTION      Total Depth 335' Ft. Completed

Surface Seal to 20' Ft.

Any Stratas sealed: Yes  No   
If yes, depth of Stratas

From    Ft. to    Feet  
From    Ft. to    Feet

Perforations  
From 30 Ft. to 335' Feet  
From    Ft. to    Feet  
From    Ft. to    Feet

WATER LEVELS

First water at 42' Feet  
Static level at 4' Feet

WELL TESTS

How performed Air Compressor  
Yield 100 GPM with 80' Feet  
Drawdown    Ft. after 6 Hrs.

WELL LOG

(Formation; describe by color, size of material, structure)

|     | Ft. to | Ft/                                |
|-----|--------|------------------------------------|
| 0   | 18     | Top Soil                           |
| 18  | 42     | Brown Clay                         |
| 42  | 236    | Clay w/ Imbedded Gravel            |
| 236 | 340    | Clay w/ Imbedded Gravel & Boulders |

Signed: J. W. Postree

License # 294001

HEALTH DEPT. USE ONLY

Fee: \$10.00

Date: 9-12-74

RECEIPT NO: 1283

BY: Paul Emmons

RECEIVED A.P. #22-100-14

OCT 7 1974

NAPA COUNTY HEALTH DEPARTMENT  
DIVISION OF ENVIRONMENTAL HEALTH

APPLICATION & PERMIT TO CONSTRUCT

A WATER WELL  
(ORDINANCE # )

DIVISION OF  
ENVIRONMENTAL HEALTH

NAME ██████████

ADDRESS ██████████

(Owner)

(Job Location)

NAME Wesley Gregson

ADDRESS 5365 71-4 Hwy.

(Well Driller)

7-12-74

TYPE OF  
WORK

NEW WELL  
 TEST HOLES  
 TYPE I PERMIT

RECONDITIONING  
 DESTROYING  
 TYPE II PERMIT

DEEPENING  
 OTHER  
 FEE

PROPOSED  
USE

DOMESTIC  
 TEST WELL

IRRIGATION  
 OTHER

INDUSTRIAL

MUNICIPAL

TYPE OF  
EQUIPMENT TO  
BE USED

Rotary  Cable  Hand Dug  Other

CONSTRUCTION  
PROPOSED

Diameter of casing 8" Material Steel Annular Space: Size 2"  
Sealed with: Concrete  Grout  Neat Cement  Puddled Clay  Other  
Conductor Casing: Yes  No  Material  
Chlorination By: Owner  Pump Co  Driller

Wesley Gregson  
(SIGNATURE OF APPLICANT)

9/12/74  
(DATE)

NOTICE TO DRILLER: COMPLETE THIS PORTION AND PROVIDE OWNER WITH THIS COPY.

CASING

CONSTRUCTION

Total Depth 335 Ft.

Surface Seal to 20 Ft.

Any Stratas sealed: Yes  No

If yes, depth of Stratas

From    Ft. to    Feet

From    Ft. to    Feet

Perforations

From 30 Ft. to 335 Feet

From    Ft. to    Feet

From    Ft. to    Feet

WATER LEVELS

First water at 24 Feet

Static level at 15 Feet

WELL TESTS

How performed Pailin & Air Compressor

Yield 35 GPM with    Feet

Drawdown    Ft. after 4 Hrs.

WELL LOG

(Formation; describe by color, size of  
material, structure)

|     | Ft. to | Ft/                                   |
|-----|--------|---------------------------------------|
| 0   | 5      | Top Soil                              |
| 5   | 24     | Clay Imbedded Gravel                  |
| 24  | 48     | Large Gravel & Sand                   |
| 48  | 66     | Large Gravel &<br>Boulders            |
| 66  | 261    | Clay Imbedded<br>Gravel & Boulders    |
| 261 | 335    | Blue Gray Clay &<br>Imbedded Boulders |

Signed:

License #

94001

HEALTH DEPT. USE ONLY

DATE: 9-12-74

RECEIPT NO: 1283

BY: *Paula O'neill*

NAPA COUNTY HEALTH DEPARTMENT  
DIVISION OF ENVIRONMENTAL HEALTH

RECEIVED OCT 7 1974

APPLICATION & PERMIT TO CONSTRUCT

A WATER WELL  
(ORDINANCE # )

DIVISION OF  
ENVIRONMENTAL HEALTH

NAME

ADDRESS

TE

NAME

(Owner)

(Job Location)

(Well Driller)

TYPE OF  
WORK

NEW WELL

RECONDITIONING

DEEPENING

TEST HOLES

DESTROYING

OTHER

TYPE I PERMIT

TYPE II PERMIT

FEES

PROPOSED  
USE

DOMESTIC  
TEST WELL

IRRIGATION   
OTHER

INDUSTRIAL

MUNICIPAL

Sewage Disposal On Site (Existing or Proposed) Public  Individual  Private   
Distance from well to any part of nearest sewage disposal system 300 feet.  
(Sketch of site to accompany application.)

TYPE OF  
EQUIPMENT TO  
BE USED

Rotary  Cable  Hand Dug  Other

CONSTRUCTION  
PROPOSED

Diameter of casing 8" Material steel Annular Space: Size 2"  
Sealed with: Concrete  Grout  Neat Cement  Puddled Clay  Other   
Conductor Casing: Yes  No  Material   
Chlorination By: Owner  Pump Co  Driller

*Paula O'neill*  
(SIGNATURE OF APPLICANT)

*9/12/74*  
(DATE)

NOTICE TO DRILLER: COMPLETE THIS PORTION AND PROVIDE OWNER WITH THIS COPY.

CASING

CONSTRUCTION

Total Depth 335 Ft.

Surface Seal to 20 Ft.

Any Stratas sealed: Yes No

If yes, depth of Stratas

From    Ft. to    Feet

From    Ft. to    Feet

Perforations

From 35 Ft. to 335 Feet

From    Ft. to    Feet

From    Ft. to    Feet

WATER LEVELS

First water at 60 Feet

Static level at 45 Feet

WELL TESTS

How performed

Yield    GPM with    Feet

Drawdown    Ft. after    Hrs.

WELL LOG

(Formation; describe by color, size of  
material, structure)

|     | Ft. to | Ft/                   |
|-----|--------|-----------------------|
| 0   | 5      | Topsoil               |
| 5   | 67     | Coarse Gravel & Bldrs |
| 67  | 78     | Brown Clay            |
| 78  | 139    | Boulders & Gravel     |
| 139 | 147    | Blue Clay             |
| 147 | 213    | Boulders & Clay       |
| 213 | 243    | Boulders & Gravel     |
| 243 | 320    | Boulders & Clay       |
| 320 | 335    | Grey clay & Boulders  |

Signed: *J. D. O'neill*

License # 294001



DUPLICATE  
Retain this copy

STATE OF CALIFORNIA  
THE RESOURCES AGENCY  
DEPARTMENT OF WATER RESOURCES  
WATER WELL DRILLERS REPORT

No 122286

State Well No.

Other Well No.

(1) OWNER:

Name John L. Binkley  
Address P. O. Box 1011

(2) LOCATION OF WELL:

County Colusa Owner's number, if any  
Township, Range, and Section  
Distance from cities, roads, railroads, etc.

(3) TYPE OF WORK (check):

New Well  Deepening  Reconditioning  Destroying

If destruction, describe material and procedure in Item 11.

(4) PROPOSED USE (check):

Domestic  Industrial  Municipal   
Irrigation  Test Well  Other

(5) EQUIPMENT:

Rotary   
Cable   
Other

(6) CASING INSTALLED:

STEEL:  OTHER:   
SINGLE  DOUBLE

If gravel packed

| From ft. | To ft. | Diam. | Gage or Wall | Diameter of Bore | From ft. | To ft. |
|----------|--------|-------|--------------|------------------|----------|--------|
| 0        | 200    | 8     | 250          |                  |          |        |
|          |        |       |              |                  |          |        |

Size of shoe or well ring:

Size of gravel:

Describe joint welded

(7) PERFORATIONS OR SCREEN:

Type of perforation or name of screen

| From ft. | To ft. | Perf. per row | Rows per ft. | Size in. x in. |       |
|----------|--------|---------------|--------------|----------------|-------|
| 30       | 175    | 6             | 1            | 1/4 x 3 mill   | knife |
| 180      | 200    | 8             | 2            | 3/16 x 6       |       |
|          |        |               |              |                |       |
|          |        |               |              |                |       |

(8) CONSTRUCTION:

Was a surface sanitary seal provided? Yes  No  To what depth 20 ft.

Were any strata sealed against pollution? Yes  No  If yes, note depth of strata

From ft. to ft.

From ft. to ft.

Method of sealing

(9) WATER LEVELS:

Depth at which water was first found, if known ft. 71

Standing level before perforating, if known ft. 8

Standing level after perforating and developing ft. 8

(10) WELL TESTS:

Was pump test made? Yes  No  If yes, by whom?

Yield: gal./min. with 1 ft. drawdown after 30 hrs.

Temperature of water Was a chemical analysis made? Yes  No

Was electric log made of well? Yes  No  If yes, attach copy

(11) WELL LOG:

Total depth 200 ft. Depth of completed well 200 ft.

Formation: Describe by color, character, size of material, and structure ft. to ft.

0 to 3' top soil  
3 to 11' brown clay and silt  
11 to 35' cemented gravel with boulders  
35 to 105' cemented gravel with boulders  
105 to 189' blue cemented gravel  
189 to 200' blue clay with some gravel

O - 3' TOP SOIL  
3 - 14' BROWN CLAY + GRAVEL  
14 - 35' CEMENTED GRAVEL WITH BOULDERS  
35 - 105' "  
105 - 189' BLUE CEMENTED GRAVEL  
189 - 200' BLUE CLAY WITH SOME GRAVEL

Work started 6/14/75 completed 6/16/75

WELL DRILLER'S STATEMENT:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

NAME Robert E. Binkley

(Person, firm, or corporation) (Typed or printed)

Address 605 W. Sierra Ave.

Colusa, Calif.

[SIGNED] Robert E. Binkley (Well Driller)

License No. 207069 Dated 6/17/75, 19

SKETCH LOCATION OF WELL ON REVERSE SIDE



DUPLICATE  
Driller's Copy

Page \_\_\_\_\_ of \_\_\_\_\_

Owner's Well No. \_\_\_\_\_

Date Work Began \_\_\_\_\_, Ended \_\_\_\_\_

Local Permit Agency \_\_\_\_\_

Permit No. \_\_\_\_\_

STATE OF CALIFORNIA  
WELL COMPLETION REPORT  
Refer to Instruction Pamphlet

No. 462651

|                                    |  |           |  |  |  |  |  |
|------------------------------------|--|-----------|--|--|--|--|--|
| D.W.B.U.S.E. ONLY - DO NOT FILL IN |  |           |  |  |  |  |  |
| STATE WELL NO./STATION NO.         |  |           |  |  |  |  |  |
| LATITUDE                           |  | LONGITUDE |  |  |  |  |  |
| APNU/S/OTHER                       |  |           |  |  |  |  |  |

Permit Date \_\_\_\_\_

## GEOLOGIC LOG

| DEPTH FROM SURFACE                       | DESCRIPTION               |
|------------------------------------------|---------------------------|
| 0 - 3                                    | brown clay                |
| 3 - 20                                   | brown sand                |
| 20 - 75                                  | gravel & sand             |
| 75 - 80                                  | gray/black/black rock     |
| 80 - 155                                 | gravel                    |
| 155 - 158                                | brown/mud/gray ash        |
| 158 - 224                                | brown/mud/gray ash        |
| 224 - 250                                | gray ash                  |
| 250 - 300                                | brown/ash                 |
| 300 - 320                                | grayish/black (serpent)   |
| 320 - 350                                | black segment line (soft) |
| 340 - 370                                | red ash, black serpent    |
| 370 - 400                                | ash                       |
| 400 - 460                                | brown/red ash             |
| 460 - 468                                | brown/red ash             |
| Well test 180ft. at                      |                           |
| 959pm.                                   |                           |
| 240ft. 1009pm.                           |                           |
| 320ft. 1159pm.                           |                           |
| TOTAL DEPTH OF BORING 460 (Feet)         |                           |
| TOTAL DEPTH OF COMPLETED WELL 460 (Feet) |                           |

|                                                                                                                                      |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| WELL OWNER                                                                                                                           |                                               |
| Name Duckhorn Vineyards                                                                                                              |                                               |
| Mailing Address 3025 Silverado Tr. No. (a. 94558)                                                                                    |                                               |
| City Napa                                                                                                                            | STATE CA ZIP                                  |
| WELL LOCATION                                                                                                                        |                                               |
| Address Some Settlers                                                                                                                | City Napa                                     |
| County Napa                                                                                                                          | APN Book 20-130-10                            |
| Township Range Section                                                                                                               | Latitude NORTH Longitude WEST                 |
| DEG. MIN. SEC.                                                                                                                       | DEG. MIN. SEC.                                |
| LOCATION SKETCH                                                                                                                      |                                               |
|                                                                                                                                      |                                               |
| ACTIVITY (✓) -                                                                                                                       |                                               |
| NEW WELL                                                                                                                             |                                               |
| MODIFICATION/REPAIR                                                                                                                  |                                               |
| Deepen                                                                                                                               |                                               |
| Other (Specify)                                                                                                                      |                                               |
| DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG")                                                                     |                                               |
| PLANNED USE (S) (✓)                                                                                                                  |                                               |
| MONITORING                                                                                                                           |                                               |
| WATER SUPPLY                                                                                                                         |                                               |
| Domestic                                                                                                                             |                                               |
| Public                                                                                                                               |                                               |
| Irrigation                                                                                                                           |                                               |
| Industrial                                                                                                                           |                                               |
| TEST WELL                                                                                                                            |                                               |
| CATHODIC PROTECTION                                                                                                                  |                                               |
| OTHER (Specify)                                                                                                                      |                                               |
| SOUTH                                                                                                                                |                                               |
| Illustrate or Describe Distance of Well from Landmarks such as Roads, Buildings, Fences, Rivers, etc. PLEASE BE ACCURATE & COMPLETE. |                                               |
| DRILLING METHOD mad                                                                                                                  |                                               |
| FLUID mad                                                                                                                            |                                               |
| WATER LEVEL & YIELD OF COMPLETED WELL                                                                                                |                                               |
| DEPTH OF STATIC                                                                                                                      | 60                                            |
| WATER LEVEL                                                                                                                          | (ft.) & DATE MEASURED 12-22-94                |
| ESTIMATED YIELD: 115 (GPM) & TEST TYPE air lift                                                                                      | TEST LENGTH 6 (Hrs.) TOTAL DRAWDOWN 320 (ft.) |
| * May not be representative of a well's long-term yield.                                                                             |                                               |

| DEPTH FROM SURFACE | BORE-HOLE DIA. (Inches) | CASING(S) |        |      |       |           | DEPTH FROM SURFACE | ANNULAR MATERIAL |                            |                         |                           |                     |               |          |
|--------------------|-------------------------|-----------|--------|------|-------|-----------|--------------------|------------------|----------------------------|-------------------------|---------------------------|---------------------|---------------|----------|
|                    |                         | TYPE (✓)  | SCREEN | CON. | DISC. | FILL PIPE |                    | MATERIAL/ GRADE  | INTERNAL DIAMETER (Inches) | GAUGE OR WALL THICKNESS | SLOT SIZE IF ANY (Inches) | CEMENT (TONITE) (✓) | BENTONITE (✓) | FILL (✓) |
| ft. to ft.         | inches                  |           |        |      |       |           | ft. to ft.         |                  |                            |                         |                           |                     |               |          |
| 0 - 36             | 16                      | ✓         |        |      |       |           | 0 - 36             | Plastic          | 5                          | 200                     |                           |                     |               |          |
| 36 - 460           | 8                       | ✓         |        |      |       |           | 36 - 460           | 11               | 1                          | Factory                 |                           |                     |               |          |
|                    |                         |           |        |      |       |           |                    |                  |                            |                         |                           |                     |               |          |
|                    |                         |           |        |      |       |           |                    |                  |                            |                         |                           |                     |               |          |
|                    |                         |           |        |      |       |           |                    |                  |                            |                         |                           |                     |               |          |

## ATTACHMENTS (✓)

- Geologic Log
- Well Construction Diagram
- Geophysical Log(s)
- Soil/Water Chemical Analyses
- Other

ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.

## CERTIFICATION STATEMENT

I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief.

NAME Fulliam Well Drilling  
2877 Piedmont Ave. Napa, Ca. 94558  
ADDRESS  
Signed Jon Pulley  
WELL DRILLER/AUTHORIZED REPRESENTATIVE

CITY STATE ZIP  
DATE SIGNED 1-6-95 24811  
C.B.T. LICENSE NO. 1088





United States  
Department of  
Agriculture

**NRCS**

Natural  
Resources  
Conservation  
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Napa County, California

**Duckhorn Vineyards**



# Preface

---

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (<http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/>) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (<https://offices.sc.egov.usda.gov/locator/app?agency=nrcs>) or your NRCS State Soil Scientist ([http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2\\_053951](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951)).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

---

|                                                                                         |    |
|-----------------------------------------------------------------------------------------|----|
| <b>Preface</b> .....                                                                    | 2  |
| <b>How Soil Surveys Are Made</b> .....                                                  | 5  |
| <b>Soil Map</b> .....                                                                   | 8  |
| Soil Map.....                                                                           | 9  |
| Legend.....                                                                             | 10 |
| Map Unit Legend.....                                                                    | 11 |
| Map Unit Descriptions.....                                                              | 11 |
| Napa County, California.....                                                            | 13 |
| 103—Bale loam, 0 to 2 percent slopes.....                                               | 13 |
| 104—Bale clay loam, 0 to 2 percent slopes.....                                          | 14 |
| 140—Forward silt loam, 12 to 57 percent slopes, MLRA 15.....                            | 15 |
| 141—Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15.....                         | 16 |
| <b>Soil Information for All Uses</b> .....                                              | 19 |
| Soil Properties and Qualities.....                                                      | 19 |
| Soil Erosion Factors.....                                                               | 19 |
| K Factor, Whole Soil (Duckhorn Vineyards).....                                          | 19 |
| T Factor (Duckhorn Vineyards).....                                                      | 22 |
| Soil Qualities and Features.....                                                        | 25 |
| Hydrologic Soil Group (Duckhorn Vineyards).....                                         | 25 |
| Drainage Class (Duckhorn Vineyards).....                                                | 29 |
| Depth to a Selected Soil Restrictive Layer: Lithic bedrock (Duckhorn<br>Vineyards)..... | 32 |
| Water Features.....                                                                     | 35 |
| Flooding Frequency Class (Duckhorn Vineyards).....                                      | 35 |
| <b>References</b> .....                                                                 | 40 |

# How Soil Surveys Are Made

---

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units).

Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

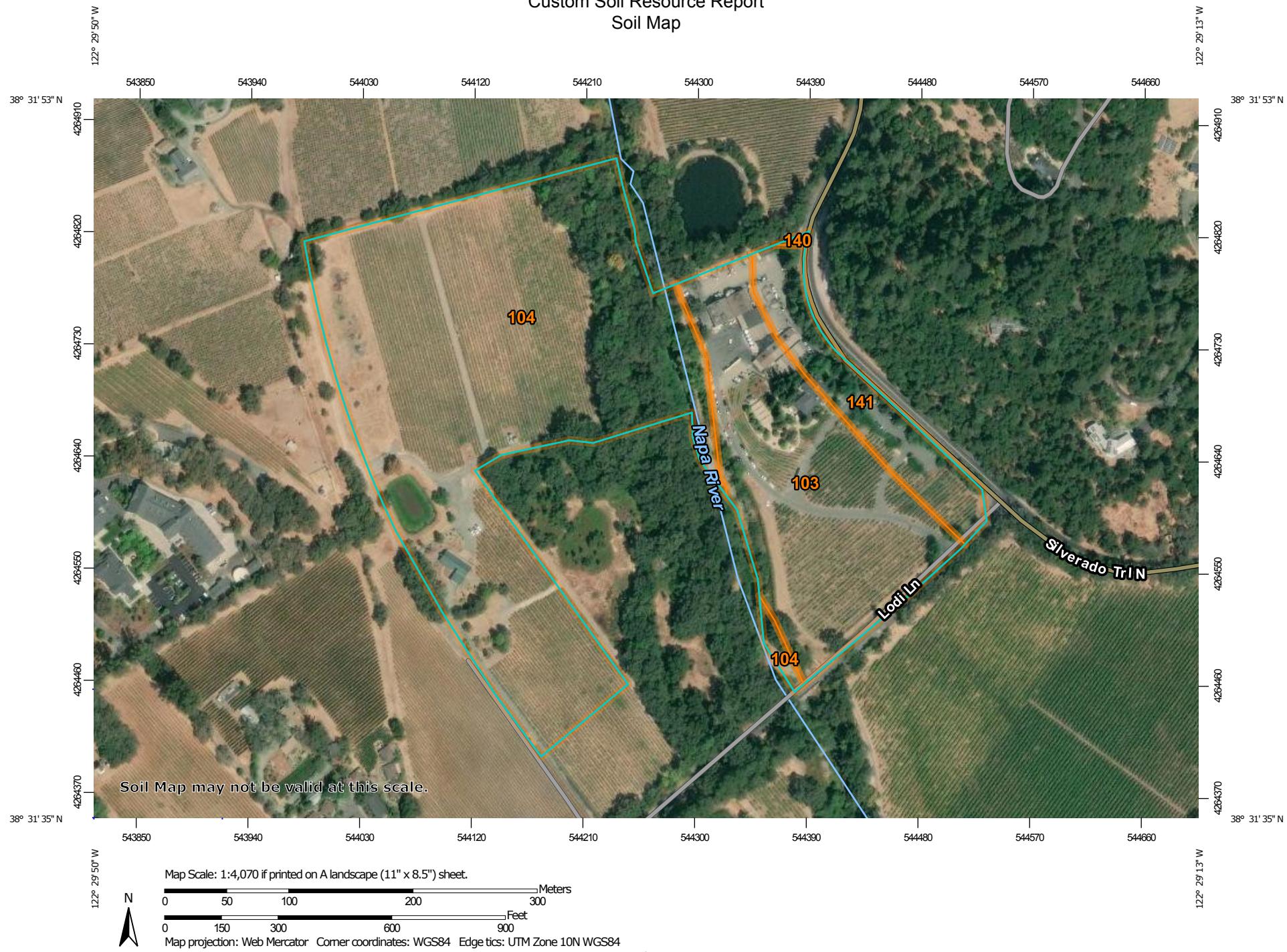
While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

## Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.


# **Soil Map**

---

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

# Custom Soil Resource Report

## Soil Map



**MAP LEGEND****Area of Interest (AOI)**
 Area of Interest (AOI)
**Soils**
 Soil Map Unit Polygons

 Soil Map Unit Lines

 Soil Map Unit Points
**Special Point Features**
 Blowout

 Borrow Pit

 Clay Spot

 Closed Depression

 Gravel Pit

 Gravelly Spot

 Landfill

 Lava Flow

 Marsh or swamp

 Mine or Quarry

 Miscellaneous Water

 Perennial Water

 Rock Outcrop

 Saline Spot

 Sandy Spot

 Severely Eroded Spot

 Sinkhole

 Slide or Slip

 Sodic Spot

 Spoil Area

 Stony Spot

 Very Stony Spot

 Wet Spot

 Other

 Special Line Features
**Water Features**
 Streams and Canals
**Transportation**
 Rails

 Interstate Highways

 US Routes

 Major Roads

 Local Roads
**Background**
 Aerial Photography
**MAP INFORMATION**

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Napa County, California

Survey Area Data: Version 11, Sep 12, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 31, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Map Unit Legend

| Map Unit Symbol                    | Map Unit Name                                          | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        | <b>30.7</b>  | <b>100.0%</b>  |

## Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Napa County, California

### 103—Bale loam, 0 to 2 percent slopes

#### Map Unit Setting

*National map unit symbol:* hdk3  
*Elevation:* 20 to 400 feet  
*Mean annual precipitation:* 25 to 35 inches  
*Mean annual air temperature:* 57 to 61 degrees F  
*Frost-free period:* 220 to 270 days  
*Farmland classification:* Prime farmland if irrigated

#### Map Unit Composition

*Bale and similar soils:* 85 percent  
*Minor components:* 3 percent  
*Estimates are based on observations, descriptions, and transects of the mapunit.*

#### Description of Bale

##### Setting

*Landform:* Alluvial fans, flood plains  
*Landform position (two-dimensional):* Footslope, toeslope  
*Landform position (three-dimensional):* Base slope, talus  
*Down-slope shape:* Linear  
*Across-slope shape:* Linear  
*Parent material:* Alluvium derived from rhyolite and/or alluvium derived from igneous rock

##### Typical profile

*H1 - 0 to 24 inches:* loam  
*H2 - 24 to 60 inches:* stratified gravelly sandy loam to loam

##### Properties and qualities

*Slope:* 0 to 2 percent  
*Depth to restrictive feature:* More than 80 inches  
*Natural drainage class:* Somewhat poorly drained  
*Runoff class:* Low  
*Capacity of the most limiting layer to transmit water (Ksat):* Moderately high to high (0.57 to 1.98 in/hr)  
*Depth to water table:* About 48 to 72 inches  
*Frequency of flooding:* Rare  
*Frequency of ponding:* None  
*Salinity, maximum in profile:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)  
*Available water storage in profile:* Moderate (about 7.2 inches)

##### Interpretive groups

*Land capability classification (irrigated):* 2w  
*Land capability classification (nonirrigated):* 3w  
*Hydrologic Soil Group:* B  
*Hydric soil rating:* No

#### Minor Components

##### Clear lake

*Percent of map unit:* 3 percent

*Landform:* Alluvial fans

*Hydric soil rating:* Yes

## 104—Bale clay loam, 0 to 2 percent slopes

### Map Unit Setting

*National map unit symbol:* hdk4

*Elevation:* 20 to 400 feet

*Mean annual precipitation:* 25 to 35 inches

*Mean annual air temperature:* 57 to 61 degrees F

*Frost-free period:* 220 to 270 days

*Farmland classification:* Prime farmland if irrigated

### Map Unit Composition

*Bale and similar soils:* 85 percent

*Minor components:* 3 percent

*Estimates are based on observations, descriptions, and transects of the mapunit.*

### Description of Bale

#### Setting

*Landform:* Flood plains, alluvial fans

*Landform position (two-dimensional):* Toeslope, footslope

*Landform position (three-dimensional):* Base slope, talus

*Down-slope shape:* Linear

*Across-slope shape:* Linear

*Parent material:* Alluvium derived from rhyolite and/or alluvium derived from igneous rock

#### Typical profile

*H1 - 0 to 24 inches:* clay loam

*H2 - 24 to 60 inches:* stratified gravelly sandy loam to loam

#### Properties and qualities

*Slope:* 0 to 2 percent

*Depth to restrictive feature:* More than 80 inches

*Natural drainage class:* Somewhat poorly drained

*Runoff class:* Low

*Capacity of the most limiting layer to transmit water (Ksat):* Moderately high to high (0.57 to 1.98 in/hr)

*Depth to water table:* About 48 to 72 inches

*Frequency of flooding:* Rare

*Frequency of ponding:* None

*Salinity, maximum in profile:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

*Available water storage in profile:* Moderate (about 7.2 inches)

#### Interpretive groups

*Land capability classification (irrigated):* 2w

*Land capability classification (nonirrigated):* 3w

*Hydrologic Soil Group:* B

*Hydric soil rating:* No

### **Minor Components**

#### **Clear lake**

*Percent of map unit:* 3 percent

*Landform:* Depressions

*Hydric soil rating:* Yes

## **140—Forward silt loam, 12 to 57 percent slopes, MLRA 15**

### **Map Unit Setting**

*National map unit symbol:* 2xc9y

*Elevation:* 310 to 2,370 feet

*Mean annual precipitation:* 33 to 56 inches

*Mean annual air temperature:* 57 to 61 degrees F

*Frost-free period:* 260 to 338 days

*Farmland classification:* Not prime farmland

### **Map Unit Composition**

*Forward and similar soils:* 85 percent

*Minor components:* 15 percent

*Estimates are based on observations, descriptions, and transects of the mapunit.*

### **Description of Forward**

#### **Setting**

*Landform:* Hillslopes

*Landform position (two-dimensional):* Backslope

*Landform position (three-dimensional):* Side slope

*Down-slope shape:* Convex

*Across-slope shape:* Convex

*Parent material:* Rhyolitic residuum weathered from volcanic rock

#### **Typical profile**

*Oi - 0 to 2 inches:* slightly decomposed plant material

*A - 2 to 6 inches:* silt loam

*BA - 6 to 12 inches:* silt loam

*Bw1 - 12 to 19 inches:* silt loam

*Bw2 - 19 to 28 inches:* silt loam

*Bw3 - 28 to 37 inches:* gravelly silt loam

*Cr - 37 to 51 inches:* bedrock

#### **Properties and qualities**

*Slope:* 12 to 57 percent

*Depth to restrictive feature:* 20 to 40 inches to paralithic bedrock

*Natural drainage class:* Well drained

*Runoff class:* High

*Capacity of the most limiting layer to transmit water (Ksat):* Moderately low to high  
(0.14 to 2.00 in/hr)

*Depth to water table:* More than 80 inches

*Frequency of flooding:* None  
*Frequency of ponding:* None  
*Salinity, maximum in profile:* Nonsaline (0.2 to 0.5 mmhos/cm)  
*Sodium adsorption ratio, maximum in profile:* 4.0  
*Available water storage in profile:* Moderate (about 6.3 inches)

**Interpretive groups**

*Land capability classification (irrigated):* 7e  
*Land capability classification (nonirrigated):* 7e  
*Hydrologic Soil Group:* C  
*Hydric soil rating:* No

**Minor Components**

**Aiken**

*Percent of map unit:* 5 percent

**Boomer**

*Percent of map unit:* 5 percent

**Kidd**

*Percent of map unit:* 3 percent

**Sobrante**

*Percent of map unit:* 2 percent

**141—Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15**

**Map Unit Setting**

*National map unit symbol:* 2y0fr  
*Elevation:* 240 to 2,410 feet  
*Mean annual precipitation:* 27 to 49 inches  
*Mean annual air temperature:* 57 to 61 degrees F  
*Frost-free period:* 262 to 343 days  
*Farmland classification:* Not prime farmland

**Map Unit Composition**

*Forward and similar soils:* 50 percent  
*Kidd and similar soils:* 40 percent  
*Minor components:* 10 percent  
*Estimates are based on observations, descriptions, and transects of the mapunit.*

**Description of Forward**

**Setting**

*Landform:* Hillslopes  
*Landform position (two-dimensional):* Backslope  
*Landform position (three-dimensional):* Side slope  
*Down-slope shape:* Concave  
*Across-slope shape:* Concave  
*Parent material:* Rhyolitic residuum weathered from volcanic rock

### Typical profile

*Oi - 0 to 2 inches:* slightly decomposed plant material  
*A - 2 to 6 inches:* silt loam  
*BA - 6 to 12 inches:* silt loam  
*Bw1 - 12 to 19 inches:* silt loam  
*Bw2 - 19 to 28 inches:* silt loam  
*Bw3 - 28 to 37 inches:* gravelly silt loam  
*Cr - 37 to 51 inches:* bedrock

### Properties and qualities

*Slope:* 11 to 60 percent  
*Depth to restrictive feature:* 20 to 40 inches to paralithic bedrock  
*Natural drainage class:* Well drained  
*Runoff class:* Medium  
*Capacity of the most limiting layer to transmit water (Ksat):* Moderately low to high (0.14 to 2.00 in/hr)  
*Depth to water table:* More than 80 inches  
*Frequency of flooding:* None  
*Frequency of ponding:* None  
*Salinity, maximum in profile:* Nonsaline (0.2 to 0.5 mmhos/cm)  
*Sodium adsorption ratio, maximum in profile:* 4.0  
*Available water storage in profile:* Moderate (about 6.3 inches)

### Interpretive groups

*Land capability classification (irrigated):* None specified  
*Land capability classification (nonirrigated):* 7e  
*Hydrologic Soil Group:* C  
*Ecological site:* STEEP SHALLOW LOAMY UPLANDS (R015XD130CA)  
*Hydric soil rating:* No

## Description of Kidd

### Setting

*Landform:* Hillslopes  
*Landform position (two-dimensional):* Backslope  
*Landform position (three-dimensional):* Side slope  
*Down-slope shape:* Convex  
*Across-slope shape:* Convex  
*Parent material:* Residuum weathered from rhyolite

### Typical profile

*A - 0 to 4 inches:* gravelly loam  
*Bw1 - 4 to 10 inches:* loam  
*Bw2 - 10 to 14 inches:* loam  
*R - 14 to 25 inches:* bedrock

### Properties and qualities

*Slope:* 11 to 60 percent  
*Depth to restrictive feature:* 5 to 20 inches to lithic bedrock  
*Natural drainage class:* Well drained  
*Runoff class:* Medium  
*Capacity of the most limiting layer to transmit water (Ksat):* Moderately low to moderately high (0.14 to 1.42 in/hr)  
*Depth to water table:* More than 80 inches  
*Frequency of flooding:* None  
*Frequency of ponding:* None

## Custom Soil Resource Report

*Salinity, maximum in profile:* Nonsaline (0.2 to 0.5 mmhos/cm)

*Sodium adsorption ratio, maximum in profile:* 2.0

*Available water storage in profile:* Very low (about 2.4 inches)

### Interpretive groups

*Land capability classification (irrigated):* None specified

*Land capability classification (nonirrigated):* 7e

*Hydrologic Soil Group:* D

*Ecological site:* VERY SHALLOW (R015XD131CA)

*Hydric soil rating:* No

### Minor Components

#### Aiken

*Percent of map unit:* 5 percent

*Hydric soil rating:* No

#### Toomes

*Percent of map unit:* 3 percent

#### Rock outcrop

*Percent of map unit:* 2 percent

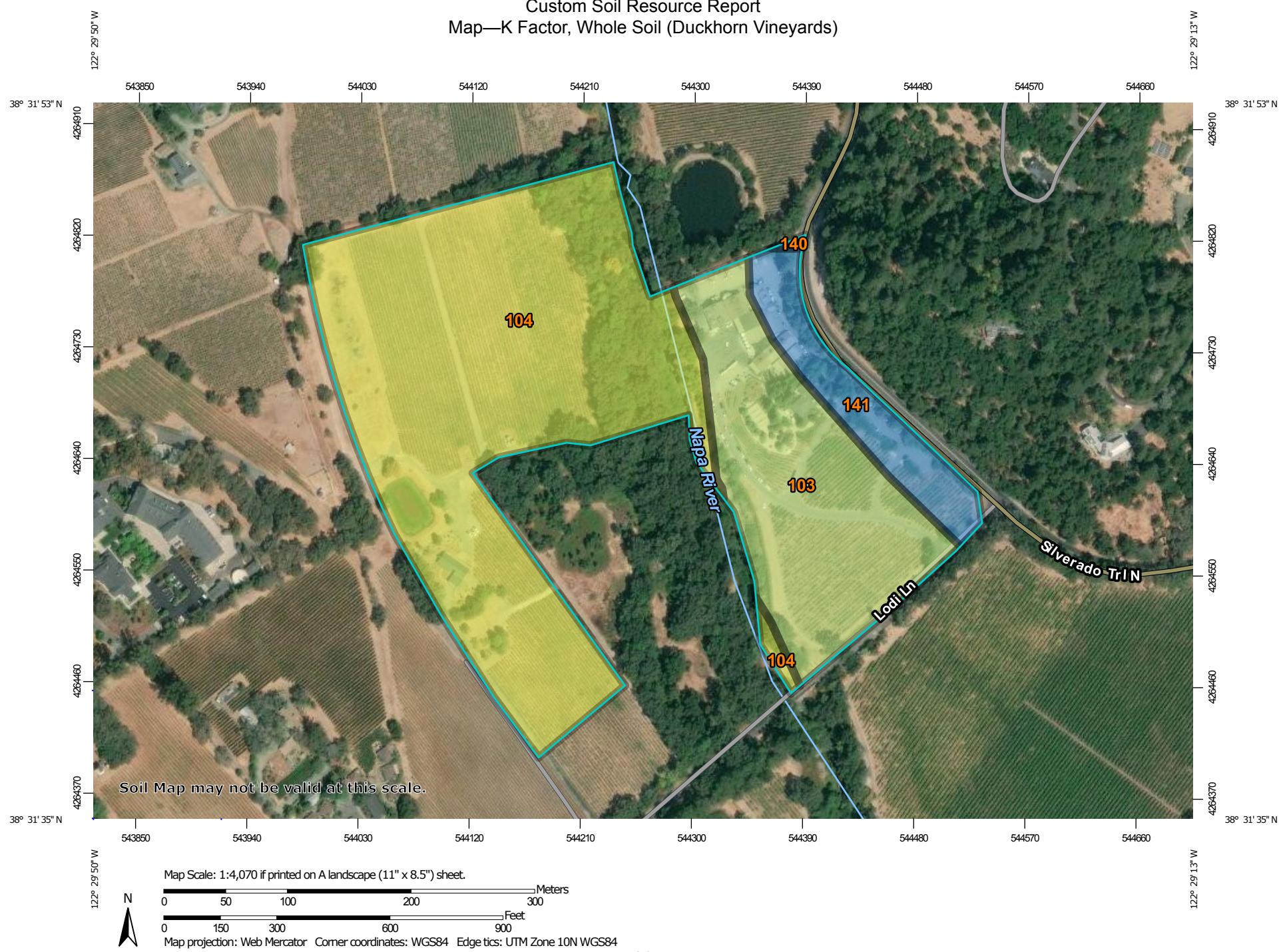
# **Soil Information for All Uses**

---

## **Soil Properties and Qualities**

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

## **Soil Erosion Factors**


Soil Erosion Factors are soil properties and interpretations used in evaluating the soil for potential erosion. Example soil erosion factors can include K factor for the whole soil or on a rock free basis, T factor, wind erodibility group and wind erodibility index.

### **K Factor, Whole Soil (Duckhorn Vineyards)**

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Custom Soil Resource Report  
Map—K Factor, Whole Soil (Duckhorn Vineyards)



## Custom Soil Resource Report

### MAP LEGEND

|                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------|--|
| <b>Area of Interest (AOI)</b>                                                                                  |  |
|  Area of Interest (AOI)       |  |
|                                                                                                                |  |
| <b>Soils</b>                                                                                                   |  |
| <b>Soil Rating Polygons</b>                                                                                    |  |
|  .02                          |  |
|  .05                          |  |
|  .10                          |  |
|  .15                          |  |
|  .17                          |  |
|  .20                          |  |
|  .24                          |  |
|  .28                          |  |
|  .32                          |  |
|  .37                          |  |
|  .43                          |  |
|  .49                          |  |
|  .55                          |  |
|  .64                          |  |
|  Not rated or not available   |  |
|                                                                                                                |  |
| <b>Soil Rating Points</b>                                                                                      |  |
|  .02                          |  |
|  .05                          |  |
|  .10                          |  |
|  .15                          |  |
|  .17                          |  |
|  .20                          |  |
|  .24                          |  |
|  .28                          |  |
|  .32                         |  |
|  .37                        |  |
|  .43                        |  |
|  .49                        |  |
|  .55                        |  |
|  .64                        |  |
|  Not rated or not available |  |
|                                                                                                                |  |
| <b>Soil Rating Lines</b>                                                                                       |  |
|  .02                        |  |
|  .05                        |  |
|  .10                        |  |
|  .15                        |  |
|  .17                        |  |
|  .20                        |  |
|  .24                        |  |
|  .28                        |  |
|  .32                        |  |
|  .37                        |  |
|  .43                        |  |
|  .49                        |  |
|  .55                        |  |
|  .64                        |  |
|  Not rated or not available |  |
|                                                                                                                |  |
| <b>Water Features</b>                                                                                          |  |
|  .24                          |  |
|  .28                          |  |
|  .32                          |  |
|  .37                          |  |
|  .43                          |  |
|  .49                          |  |
|  .55                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                          |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
|  .64                        |  |
| <img alt="Wavy                                                                                                 |  |

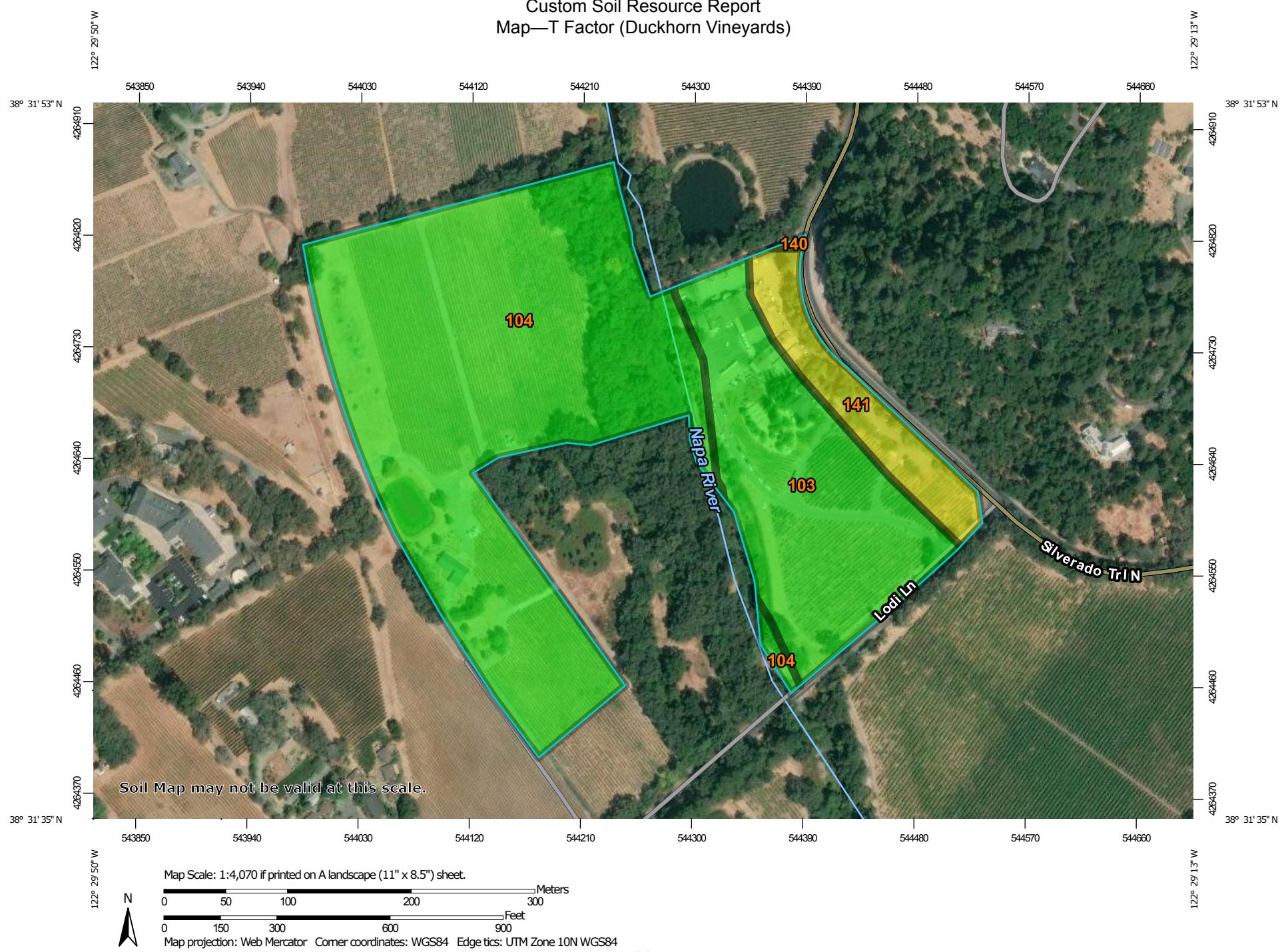
**Table—K Factor, Whole Soil (Duckhorn Vineyards)**

| Map unit symbol                    | Map unit name                                          | Rating | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|--------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | .24    | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | .20    | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | .43    | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | .43    | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        |        | <b>30.7</b>  | <b>100.0%</b>  |

**Rating Options—K Factor, Whole Soil (Duckhorn Vineyards)**

*Aggregation Method:* Dominant Condition

*Component Percent Cutoff:* None Specified


*Tie-break Rule:* Higher

*Layer Options (Horizon Aggregation Method):* All Layers (Weighted Average)

**T Factor (Duckhorn Vineyards)**

The T factor is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Custom Soil Resource Report  
Map—T Factor (Duckhorn Vineyards)



## MAP LEGEND

**Area of Interest (AOI)**  
 Area of Interest (AOI)

**Soils****Soil Rating Polygons**

-  1
-  2
-  3
-  4
-  5
-  Not rated or not available

**Soil Rating Lines**

-  1
-  2
-  3
-  4
-  5
-  Not rated or not available

**Soil Rating Points**

-  1
-  2
-  3
-  4
-  5
-  Not rated or not available

**Water Features**

-  Streams and Canals

**Transportation**

-  Rails
-  Interstate Highways
-  US Routes
-  Major Roads
-  Local Roads

**Background**

-  Aerial Photography

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service  
 Web Soil Survey URL:  
 Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Napa County, California  
 Survey Area Data: Version 11, Sep 12, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 31, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

**Table—T Factor (Duckhorn Vineyards)**

| Map unit symbol                    | Map unit name                                          | Rating (tons per acre per year) | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|---------------------------------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | 5                               | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | 5                               | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | 3                               | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | 3                               | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        |                                 | <b>30.7</b>  | <b>100.0%</b>  |

**Rating Options—T Factor (Duckhorn Vineyards)**

*Units of Measure:* tons per acre per year

*Aggregation Method:* Dominant Condition

*Component Percent Cutoff:* None Specified

*Tie-break Rule:* Lower

*Interpret Nulls as Zero:* No

**Soil Qualities and Features**

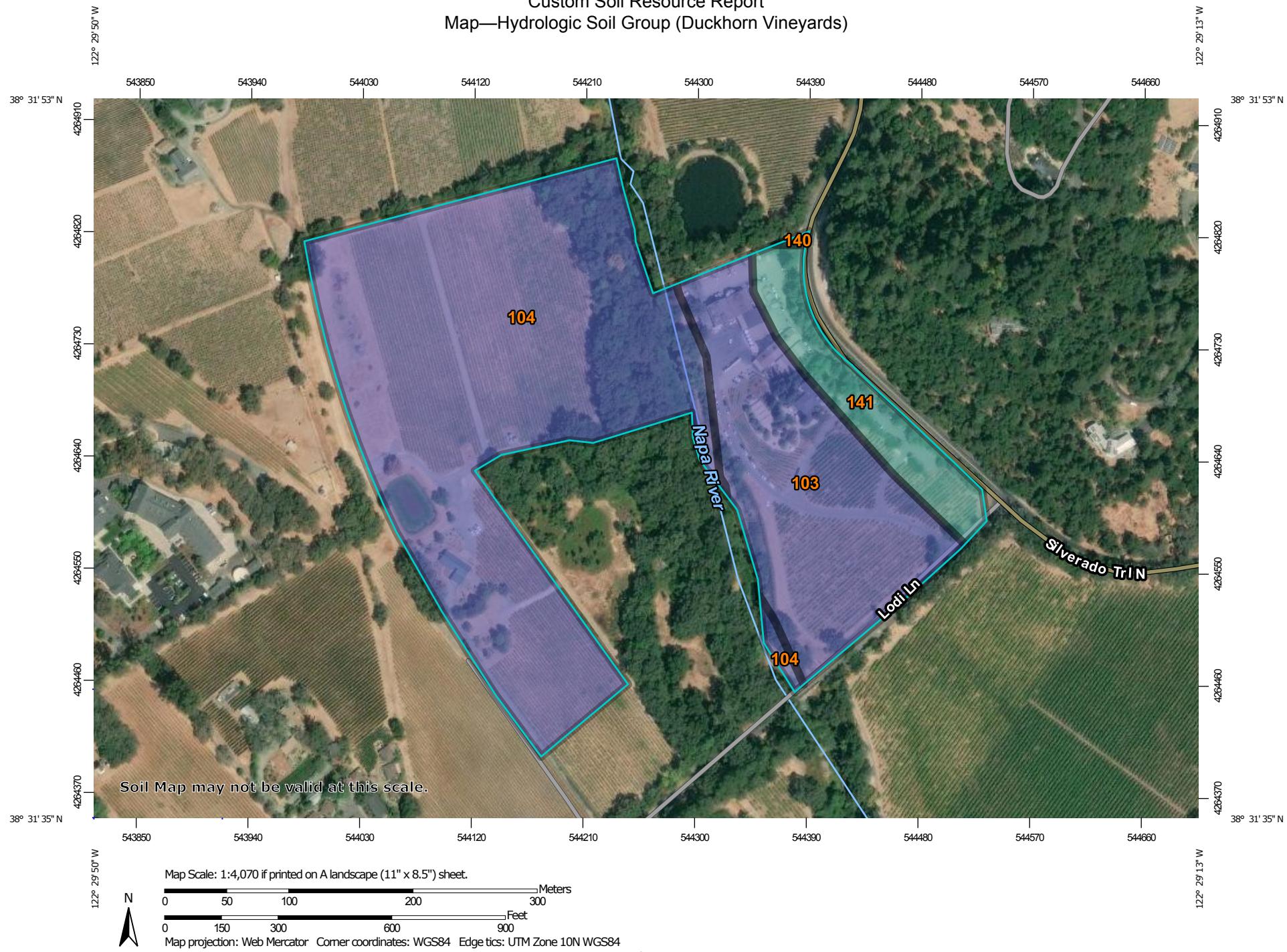
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

**Hydrologic Soil Group (Duckhorn Vineyards)**

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

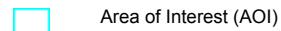
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.


Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Custom Soil Resource Report  
Map—Hydrologic Soil Group (Duckhorn Vineyards)



## MAP LEGEND

## Area of Interest (AOI)



Area of Interest (AOI)

## Soils

## Soil Rating Polygons

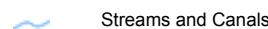
|  |                            |
|--|----------------------------|
|  | A                          |
|  | A/D                        |
|  | B                          |
|  | B/D                        |
|  | C                          |
|  | C/D                        |
|  | D                          |
|  | Not rated or not available |

## Soil Rating Lines

|  |                            |
|--|----------------------------|
|  | A                          |
|  | A/D                        |
|  | B                          |
|  | B/D                        |
|  | C                          |
|  | C/D                        |
|  | D                          |
|  | Not rated or not available |

## Soil Rating Points

|  |     |
|--|-----|
|  | A   |
|  | A/D |
|  | B   |
|  | B/D |


## C

## C/D

## D

## Not rated or not available

## Water Features



Streams and Canals

## Transportation



Rails



Interstate Highways



US Routes



Major Roads



Local Roads

## Background



Aerial Photography

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Napa County, California

Survey Area Data: Version 11, Sep 12, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 31, 2017

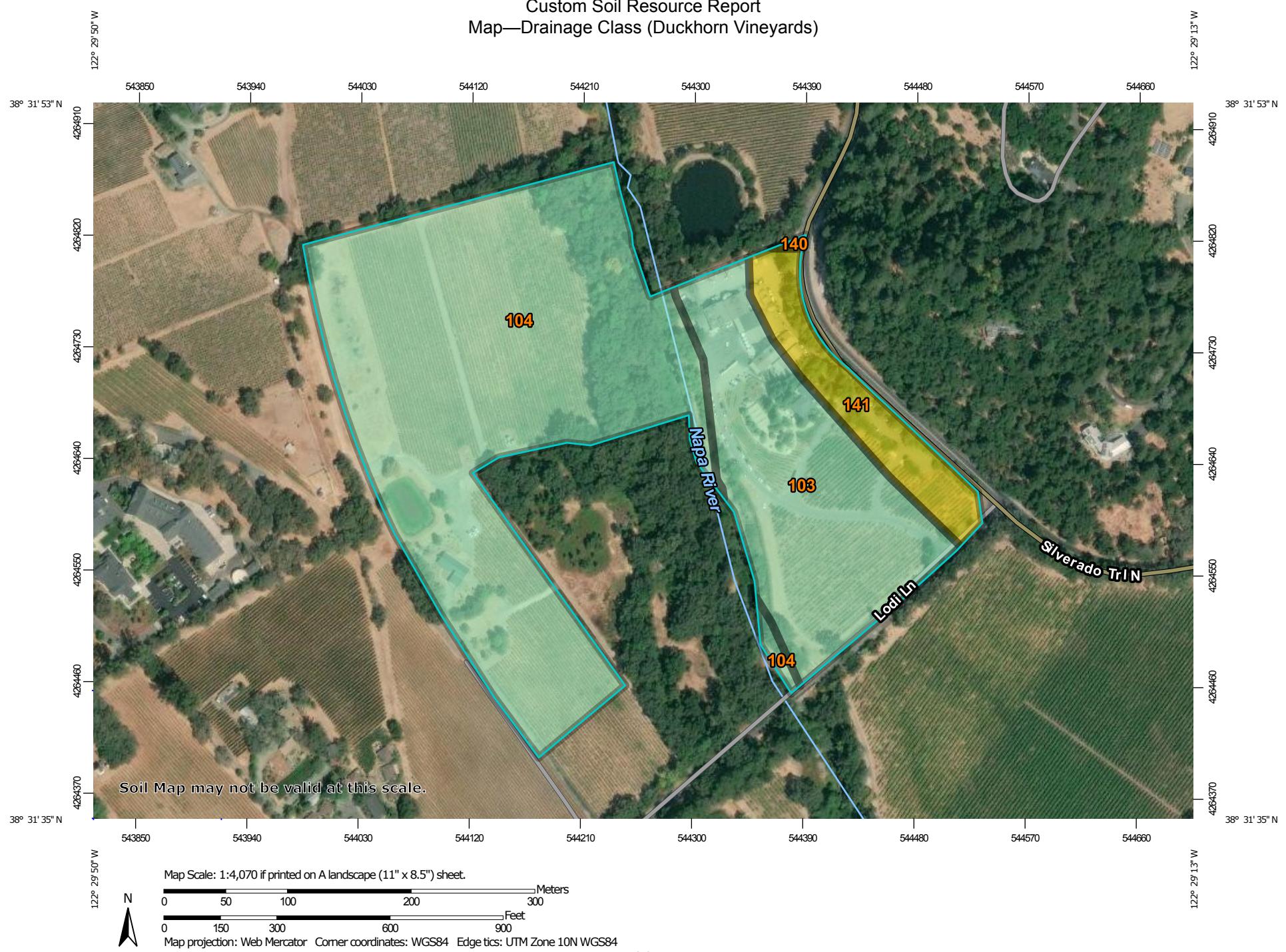
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

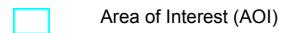
**Table—Hydrologic Soil Group (Duckhorn Vineyards)**

| Map unit symbol                    | Map unit name                                          | Rating | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|--------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | B      | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | B      | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | C      | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | C      | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        |        | <b>30.7</b>  | <b>100.0%</b>  |

**Rating Options—Hydrologic Soil Group (Duckhorn Vineyards)**

*Aggregation Method:* Dominant Condition


*Component Percent Cutoff:* None Specified


*Tie-break Rule:* Higher

**Drainage Class (Duckhorn Vineyards)**

"Drainage class (natural)" refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."

Custom Soil Resource Report  
Map—Drainage Class (Duckhorn Vineyards)



**MAP LEGEND****Area of Interest (AOI)**

Area of Interest (AOI)

**Soils****Soil Rating Polygons**

- █ Excessively drained
- █ Somewhat excessively drained
- █ Well drained
- █ Moderately well drained
- █ Somewhat poorly drained
- █ Poorly drained
- █ Very poorly drained
- █ Subaqueous
- █ Not rated or not available

**Soil Rating Lines**

- Excessively drained
- Somewhat excessively drained
- Well drained
- Moderately well drained
- Somewhat poorly drained
- Poorly drained
- Very poorly drained
- Subaqueous
- Not rated or not available

**Soil Rating Points**█ Excessively drained█ Somewhat excessively drained█ Well drained█ Moderately well drained█ Somewhat poorly drained█ Poorly drained█ Very poorly drained█ Subaqueous█ Not rated or not available**Water Features**~ Streams and Canals**Transportation**+---+ Rails— Interstate Highways— US Routes— Major Roads— Local Roads**Background**█ Aerial Photography**MAP INFORMATION**

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Napa County, California

Survey Area Data: Version 11, Sep 12, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 31, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

**Table—Drainage Class (Duckhorn Vineyards)**

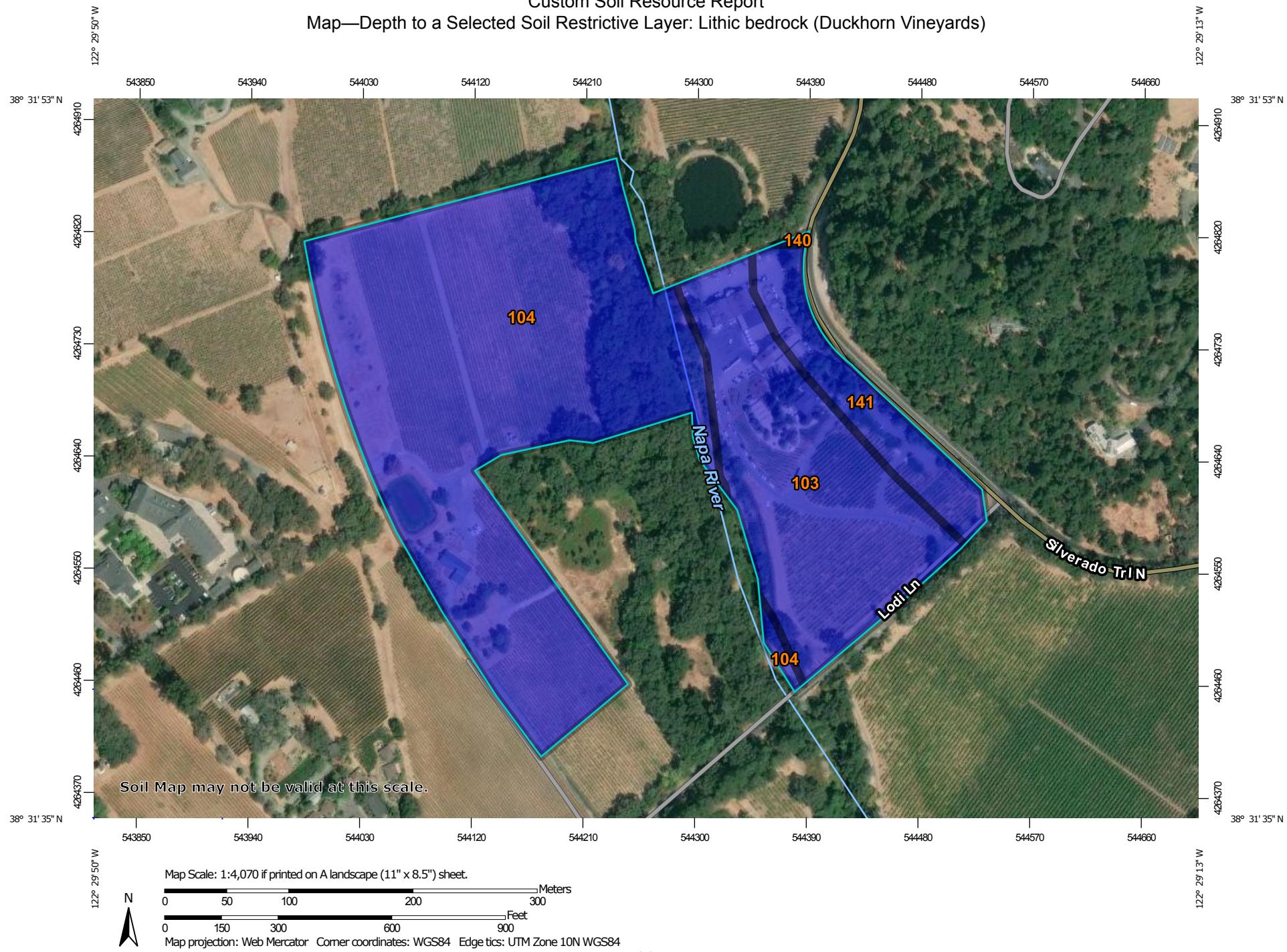
| Map unit symbol                    | Map unit name                                          | Rating                  | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|-------------------------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | Somewhat poorly drained | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | Somewhat poorly drained | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | Well drained            | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | Well drained            | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        |                         | <b>30.7</b>  | <b>100.0%</b>  |

**Rating Options—Drainage Class (Duckhorn Vineyards)**

*Aggregation Method:* Dominant Condition

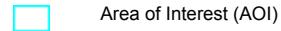
*Component Percent Cutoff:* None Specified

*Tie-break Rule:* Higher


**Depth to a Selected Soil Restrictive Layer: Lithic bedrock (Duckhorn Vineyards)**

A "restrictive layer" is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers.

This theme presents the depth to the user selected type of restrictive layer as described in for each map unit. If no restrictive layer is described in a map unit, it is represented by the "> 200" depth class.


This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Custom Soil Resource Report  
Map—Depth to a Selected Soil Restrictive Layer: Lithic bedrock (Duckhorn Vineyards)



## MAP LEGEND

## Area of Interest (AOI)



Area of Interest (AOI)

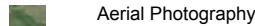
## Soils

## Soil Rating Polygons

|  |                            |
|--|----------------------------|
|  | 0 - 25                     |
|  | 25 - 50                    |
|  | 50 - 100                   |
|  | 100 - 150                  |
|  | 150 - 200                  |
|  | > 200                      |
|  | Not rated or not available |

## Soil Rating Lines

|  |                            |
|--|----------------------------|
|  | 0 - 25                     |
|  | 25 - 50                    |
|  | 50 - 100                   |
|  | 100 - 150                  |
|  | 150 - 200                  |
|  | > 200                      |
|  | Not rated or not available |


## Soil Rating Points

|  |           |
|--|-----------|
|  | 0 - 25    |
|  | 25 - 50   |
|  | 50 - 100  |
|  | 100 - 150 |
|  | 150 - 200 |
|  | > 200     |

## Water Features

|  |                     |
|--|---------------------|
|  | Streams and Canals  |
|  | Rails               |
|  | Interstate Highways |
|  | US Routes           |
|  | Major Roads         |
|  | Local Roads         |

## Background



Aerial Photography

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Napa County, California

Survey Area Data: Version 11, Sep 12, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 31, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

**Table—Depth to a Selected Soil Restrictive Layer: Lithic bedrock (Duckhorn Vineyards)**

| Map unit symbol                    | Map unit name                                          | Rating (centimeters) | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|----------------------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | >200                 | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | >200                 | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | >200                 | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | >200                 | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        |                      | <b>30.7</b>  | <b>100.0%</b>  |

**Rating Options—Depth to a Selected Soil Restrictive Layer: Lithic bedrock (Duckhorn Vineyards)***Units of Measure:* centimeters*Restriction Kind:* Lithic bedrock*Aggregation Method:* Dominant Component*Component Percent Cutoff:* None Specified*Tie-break Rule:* Lower*Interpret Nulls as Zero:* No

## Water Features

Water Features include ponding frequency, flooding frequency, and depth to water table.

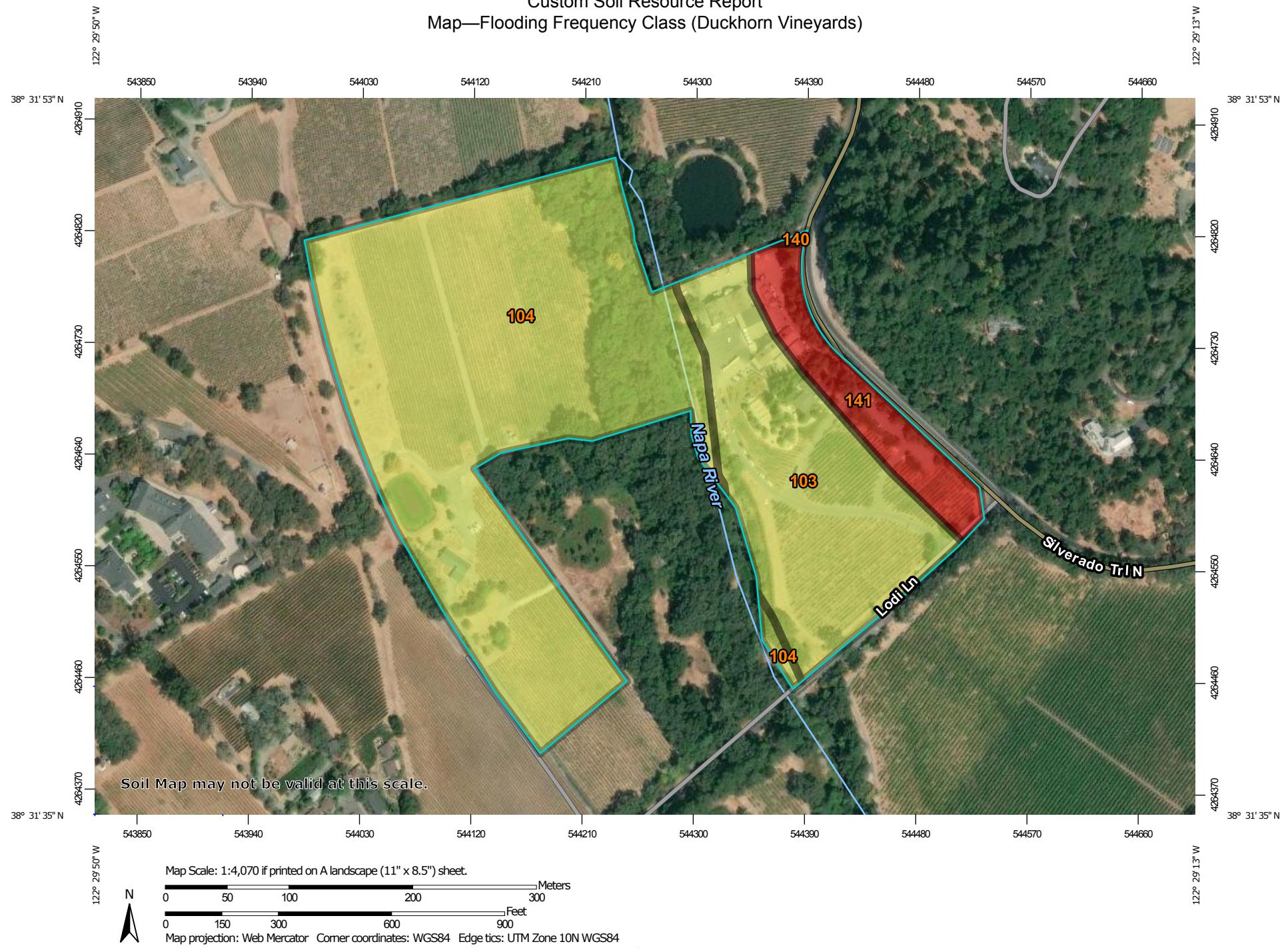
### Flooding Frequency Class (Duckhorn Vineyards)

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent.

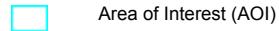
"None" means that flooding is not probable. The chance of flooding is nearly 0 percent in any year. Flooding occurs less than once in 500 years.

"Very rare" means that flooding is very unlikely but possible under extremely unusual weather conditions. The chance of flooding is less than 1 percent in any year.


"Rare" means that flooding is unlikely but possible under unusual weather conditions. The chance of flooding is 1 to 5 percent in any year.

"Occasional" means that flooding occurs infrequently under normal weather conditions. The chance of flooding is 5 to 50 percent in any year.

"Frequent" means that flooding is likely to occur often under normal weather conditions. The chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year.


"Very frequent" means that flooding is likely to occur very often under normal weather conditions. The chance of flooding is more than 50 percent in all months of any year.

## Custom Soil Resource Report Map—Flooding Frequency Class (Duckhorn Vineyards)



## MAP LEGEND

## Area of Interest (AOI)



Area of Interest (AOI)

## Soils

## Soil Rating Polygons

|                                                                                                       |                            |
|-------------------------------------------------------------------------------------------------------|----------------------------|
| <span style="background-color: red; display: inline-block; width: 10px; height: 10px;"></span>        | None                       |
| <span style="background-color: orange; display: inline-block; width: 10px; height: 10px;"></span>     | Very Rare                  |
| <span style="background-color: yellow; display: inline-block; width: 10px; height: 10px;"></span>     | Rare                       |
| <span style="background-color: lightgreen; display: inline-block; width: 10px; height: 10px;"></span> | Occasional                 |
| <span style="background-color: lightblue; display: inline-block; width: 10px; height: 10px;"></span>  | Frequent                   |
| <span style="background-color: blue; display: inline-block; width: 10px; height: 10px;"></span>       | Very Frequent              |
| <span style="background-color: white; display: inline-block; width: 10px; height: 10px;"></span>      | Not rated or not available |

## Soil Rating Lines

|                                                                                                       |                            |
|-------------------------------------------------------------------------------------------------------|----------------------------|
| <span style="background-color: red; display: inline-block; width: 10px; height: 10px;"></span>        | None                       |
| <span style="background-color: orange; display: inline-block; width: 10px; height: 10px;"></span>     | Very Rare                  |
| <span style="background-color: yellow; display: inline-block; width: 10px; height: 10px;"></span>     | Rare                       |
| <span style="background-color: lightgreen; display: inline-block; width: 10px; height: 10px;"></span> | Occasional                 |
| <span style="background-color: lightblue; display: inline-block; width: 10px; height: 10px;"></span>  | Frequent                   |
| <span style="background-color: blue; display: inline-block; width: 10px; height: 10px;"></span>       | Very Frequent              |
| <span style="background-color: white; display: inline-block; width: 10px; height: 10px;"></span>      | Not rated or not available |

## Soil Rating Points

|                                                                                                       |               |
|-------------------------------------------------------------------------------------------------------|---------------|
| <span style="background-color: red; display: inline-block; width: 10px; height: 10px;"></span>        | None          |
| <span style="background-color: orange; display: inline-block; width: 10px; height: 10px;"></span>     | Very Rare     |
| <span style="background-color: yellow; display: inline-block; width: 10px; height: 10px;"></span>     | Rare          |
| <span style="background-color: lightgreen; display: inline-block; width: 10px; height: 10px;"></span> | Occasional    |
| <span style="background-color: lightblue; display: inline-block; width: 10px; height: 10px;"></span>  | Frequent      |
| <span style="background-color: blue; display: inline-block; width: 10px; height: 10px;"></span>       | Very Frequent |

## Water Features

|  |                     |
|--|---------------------|
|  | Streams and Canals  |
|  | Rails               |
|  | Interstate Highways |
|  | US Routes           |
|  | Major Roads         |
|  | Local Roads         |

## Background



Aerial Photography

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Napa County, California

Survey Area Data: Version 11, Sep 12, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 31, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

**Table—Flooding Frequency Class (Duckhorn Vineyards)**

| Map unit symbol                    | Map unit name                                          | Rating | Acres in AOI | Percent of AOI |
|------------------------------------|--------------------------------------------------------|--------|--------------|----------------|
| 103                                | Bale loam, 0 to 2 percent slopes                       | Rare   | 8.2          | 26.9%          |
| 104                                | Bale clay loam, 0 to 2 percent slopes                  | Rare   | 19.8         | 64.4%          |
| 140                                | Forward silt loam, 12 to 57 percent slopes, MLRA 15    | None   | 0.0          | 0.1%           |
| 141                                | Forward-Kidd complex, 11 to 60 percent slopes, MLRA 15 | None   | 2.6          | 8.6%           |
| <b>Totals for Area of Interest</b> |                                                        |        | <b>30.7</b>  | <b>100.0%</b>  |

**Rating Options—Flooding Frequency Class (Duckhorn Vineyards)***Aggregation Method: Dominant Condition**Component Percent Cutoff: None Specified**Tie-break Rule: More Frequent**Beginning Month: January**Ending Month: December*

# References

---

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. [http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\\_054262](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262)

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. [http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\\_053577](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577)

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. [http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\\_053580](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580)

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. [http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2\\_053374](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374)

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. <http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084>

## Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. [http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2\\_054242](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242)

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. [http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\\_053624](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624)

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. [http://www.nrcs.usda.gov/Internet/FSE\\_DOCUMENTS/nrcs142p2\\_052290.pdf](http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf)