

Water System Feasibility Report

Pridmore Property
General Plan Amendment P17-00135
Rezone P20-00223 and Use Permit P20-00222
Planning Commission Hearing May 15, 2024

Water System Feasibility Report for the

Pridmore Property (Formally Capell Valley School)

1191 Capell Valley Road

Napa, CA 94558

APN: 032-130-026

Prepared By:

CMP Civil Engineering & Land Surveying Inc.

1607 Capell Valley Road

Napa, CA 94558

(707) 266-2559

Date: 7/22/2020

Jul 22, 2020

Table of Contents

Description	Page
•	-
Title Page	1
Table of Contents	2
 Water System Feasibility Report 	3 - 5
 Attachment "A" Well Location Map 	6 - 7
 Attachment "B" Water Availability and Wastewater Calculation 	ons 8 – 19
 Attachment "C" Allowable Drinking Water Constituents 	20 - 24
 Attachment "D" Water Quality Testing Results 	25 - 32
 Attachment "E" Well logs and other data 	33 - 37

CMP Civil Engineering & Land Surveying Inc \cdot (707) 266-2559 \cdot Cameron@CMPengineering.com

Water System General Descriptions

The existing water system, officially called the Capell Valley School Water System (CA2800633), historically supplied water to the Capell Valley Elementary School. Now that the school has been closed down we would like to use the existing water system to supply potable water to the proposed tourist lodging units on the subject site. The water source for the existing water system is an existing 45 gallon well which pumps to a 10,000 gallon water tank.

Water System Technical Description and Feasibility

The water source for this system is the existing well on the property. The subject source well is located on the general southeastern end of the property. See Attachment "A" for a map showing the exact location. The well is currently used to provide potable water to the existing school buildings and has a capacity of 45 gallons per minute (GPM). Please see the well logs and other pertinent information in Attachment "E". The well is currently fitted with a 55' deep seal with a minimum 3" annular space. The well water has been tested for adverse and hazardous constituents as required by local, state and federal permitting agencies. No constituents were found to be above allowable drinking water levels. The constituents that were tested for are shown in Attachment "D". From the well the water is then pumped through a network of PVC pipes rated for potable water to one 10,000 gallon potable water storage tank. From here the potable water is then routed to the existing and proposed buildings.

There will be a total of 9 tourist lodging structures and one care taker unit connected to this water system along with the existing accessory buildings already connected to it which will be there to support the proposed lodging units. Looking at the domestic and process wastewater calculations shown in Attachment "B", the maximum day demand (MDD) on this water system is 1664 gallons per day (GPD). The peak hourly demand (PHD) is $(1664 \times 1.5) = 2496$ gallons per hour (GPH). Given that the subject well has a capacity of 45 GPM, at this rate it can provide a maximum of 64,800 GPD. Comparing this to the above MDD of 1664 GPD, there is more than enough daily capacity for the proposed project. Moving on to the PHD requirements. The code states that a water system must be able to provide the PHD for four consecutive hours which in this case is $(2496 \text{ GPH} \times 4 \text{ H}) = 9,984 \text{ gallons}$. Given that the well can pump at 45 GPM this equals $(45 \text{ GPM} \times 60 \text{ M} \times 4 \text{ H}) = 10,800 \text{ gallons}$ every four hours. Add this to the capacity of the 10,000 gallon storage tank and the maximum 4 hour capacity of this water system is 20,800 gallons. Comparing this to the required 9,984 gallons, there is more than enough water available to meet the PHD requirements.

Looking at the entire parcels water use and availability, the proposed calculated annual water use for the subject parcel is 3.20 acre feet. See the Water Availability Calculations in Attachment "B". Given that this parcel is 5.08 acres in size and has a groundwater recharge rate of 1.54 acre feet of water use per acre (see Groundwater

Recharge Calculations in Attachment "B") the maximum allowed water use for this parcel would be 7.82 acre feet of water per year. Comparing the proposed use of 3.20 acre feet per year to the above 7.82 acre feet value as well as the annual well capacity value of 72.59 acre feet per year, it is clear that the subject parcel and well has more than enough capacity to serve the proposed use.

In case of emergency the existing 10,000 gallon tank will be utilized and if needed potable water will be hauled in from the City of Napa until repairs are made or new well is installed if needed.

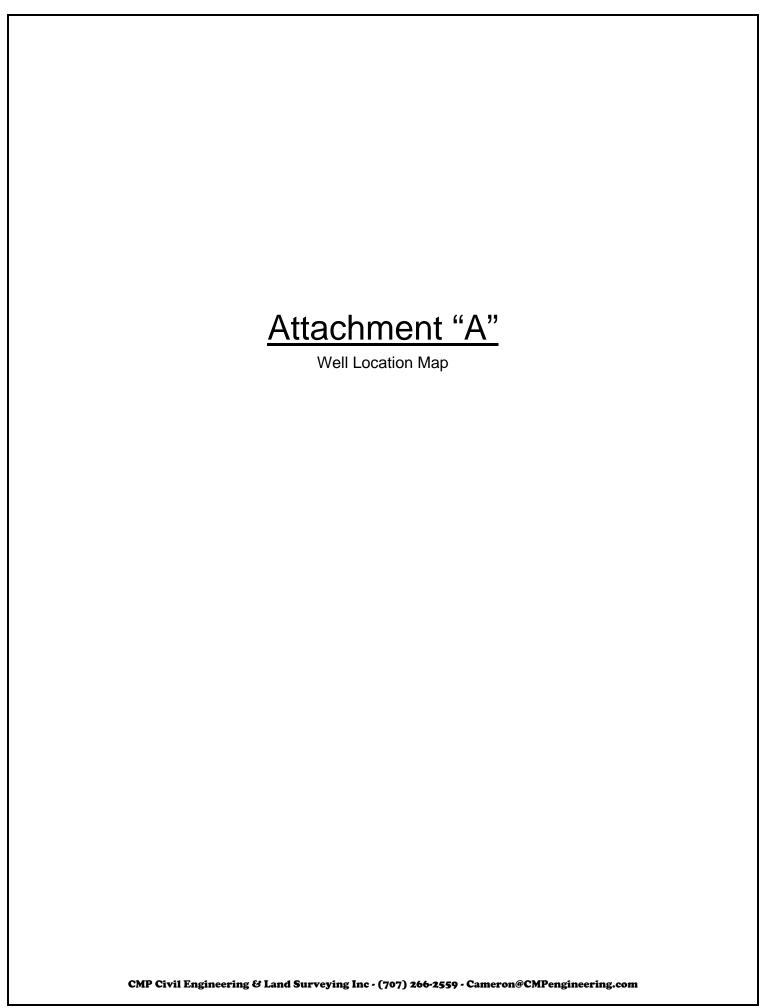
Water Quality and Testing

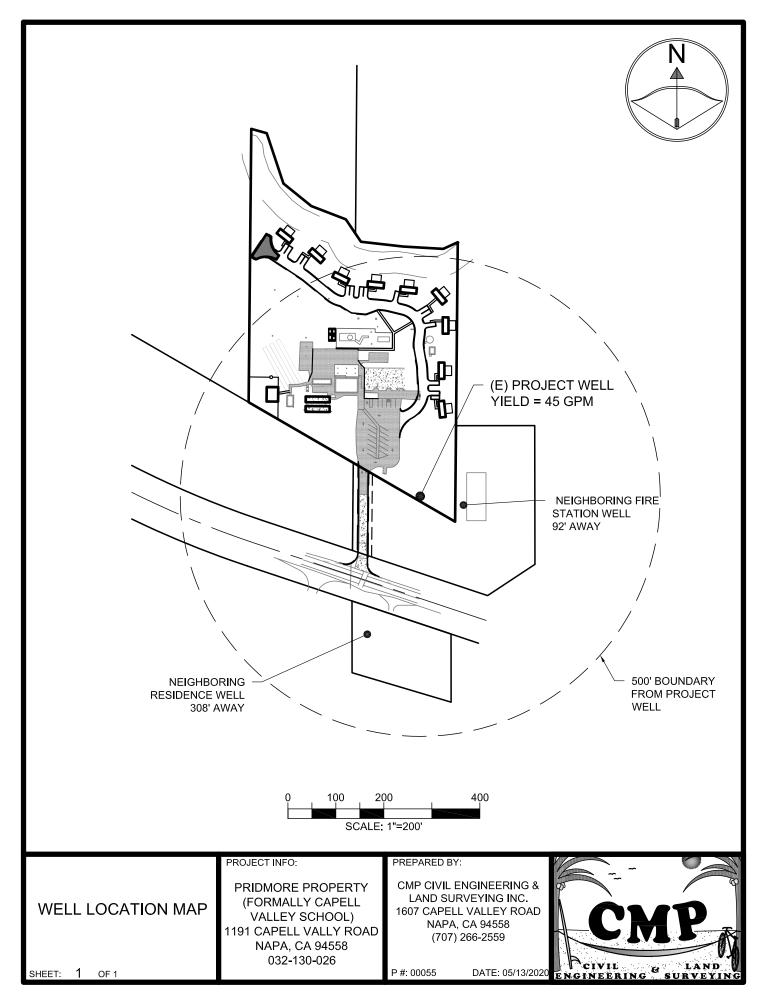
The existing project well has been tested for water quality. The hazardous constituents tested are below allowable local, state and federal drinking water quality levels. Attachment "C" shows both the EPA and California allowable constituent levels. Attachment "D" shows the testing results. The water quality for the project well meets local, state and federal requirements, and it is expected that this existing public water system will be reinstated in service once the appropriate permits and improvements have been obtained and completed. Once the system is placed in service again then continued testing will be as follows: quarterly testing for bacteria's, annual testing for nitrites, and nitrate testing once every three years.

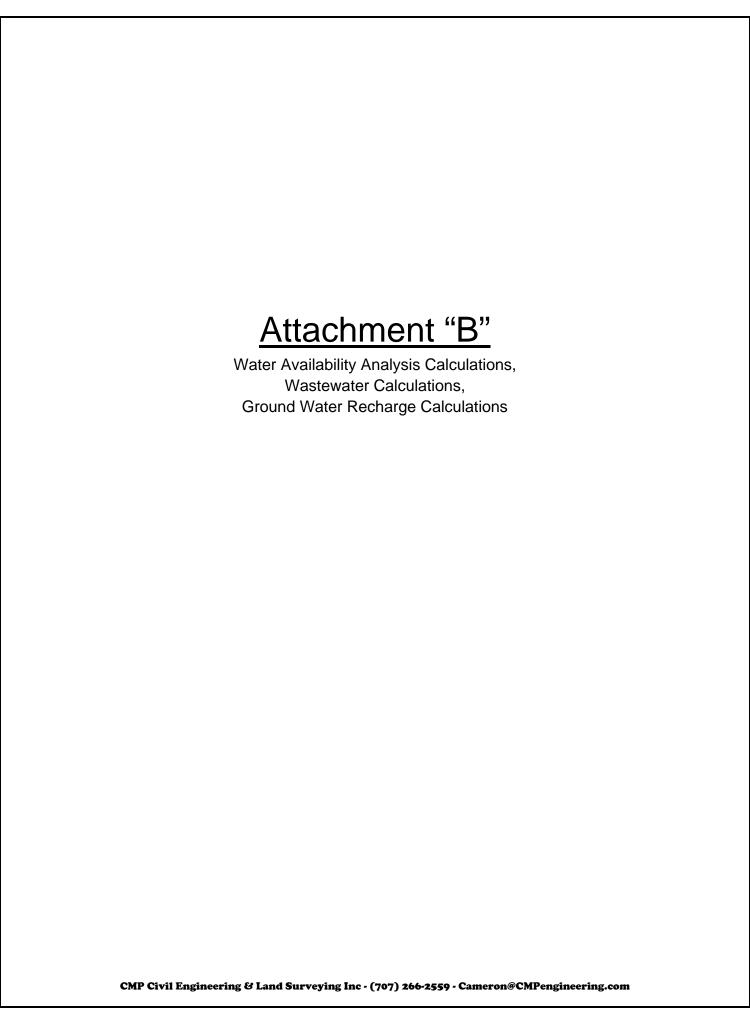
Managerial Expectations

A qualified person will be hired to properly monitor, operate and maintain this water system. This persons responsibilities will be but are not limited to the following items:

- 1. Inspect the water system on a regular bases to make sure everything is operating properly and there are no possible points of contamination.
- 2. Personally fix any failures or components showing signs of wearing within the system or if necessary coordinate with service providers to fix such items.
- 3. Properly sample the water and send samples to the proper testing lab as required by the pertinent permitting agencies.
- 4. Notify owner and manager of any water system infrastructure needs and any planned water shutdown periods.
- 5. Develop emergency water system shutdown procedures and be able to implement them.


Financial Expectations


The water system is existing so no new construction costs are expected however it is estimated that the water system would cost \$40,000 to replace today if it was necessary. It is expected that the system will have a usable lifespan of 30 years. It is expected to cost \$500 annually to operate, maintain and properly sample and test the water. It is expected that the system will cost roughly \$62,000 to replace 30 years from


now. To have this money available 30 years from now, \$2134 must be set aside in a 0% annual interest rate account for the next 30 years. Thus it will cost an estimated \$2634 per year to own, operate, maintain and eventually replace the subject water system. The proposed tourist lodging operation should produce adequate funds to meet the financial demands of this water system.

Conclusions

The subject property and associated water system has an adequate water source for the proposed and existing uses on the subject parcel.

CMPEngineering.com

Water Availability Calculations for the Capell School Lodging Project

Located at: 1191 Capell Valley Road Napa, CA 94558

Date: 7/22/2020

Project # 00055

Legend
Requires Input
Automatically Calculates
Important Value Automatically Calculates
Important Value Requires Input

Hit ctrl+alt+shift+F9 when finished to recalc a

	—						
WATER USE CALCU							
RESIDENTIAL	#	FACTOR	AF/YR				
PRIMARY RESIDENCES=	0	0.5	0.00				
SECONDARY RESIDENCES=	0	0.2	0.00				
FARM LBR DWELLING (# OF PPL) =	0	0.06 SUB TOTAL=	0.00				
NON- RESIDENTIAL CALCULATIONS							
GRICULTURAL	# ACRE	FACTOR	AF/YR				
VINEYARD IRRIGATION ONLY=	0	0.3	0.00				
VINEYARD HEAT PROTECTION=	0	0.25	0.00				
VINEYARD FROST PROTECTION=	0	0.25	0.00				
IRRIGATED PASTURE=	0	4	0.00				
ORCHARDS=	0	4	0.00				
LIVESTOCK (SHEEP/COWS)=	0	0.01	0.00				
()	-	SUB TOTAL=	0.00				
SCHOOL	# GAL	FACTOR	AF/YR				
DOMESTIC WATER USE =	345379	SEE WW CALC	1.06				
LANDSCAPING WATER USE =	1694310	SEE IRR. CALC	5.20				
		SUB TOTAL=	6.26				
NDUSTRIAL	# EMPL	FACTOR	AF/YR				
FOOD PROCESSING=	0	31	0.00				
PRINTING/ PUBLISHING=	0	0.6	0.00				
		SUB TOTAL=	0.00				
COMMERCIAL	# EMPL	FACTOR	AF/YR				
OFFICE SPACE=	0	0.01	0.00				
WAREHOUSE=	0	0.05	0.00				
		SUB TOTAL=	0.00				
EXIS	TING USE TO	OTALS					
RESIDENTIAL=	0.00	AF/YR					
AGRICULTURAL=	0.00	AF/YR					
SCHOOL=	6.26	AF/YR					
INDUSTRIAL=	0.00	AF/YR					
COMMERCIAL=	0.00	AF/YR					
OTHER USAGE (LIST BELOW)		, = 5					
RECYCLED WASTE WATER =		AF/YR					
		AF/YR					
		AF/YR					
		AF/YR					
		AF/YR					
TOTAL EXISTING WATER USE=	2039688	G/YR					
TOTAL EXISTING WATER USE=	6.26	AF/YR					

WATER AVAILABILTY C			
WELL NUMBER	Q - GPM	AF/YR	
1	45	72.590	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	45	72.590	
SPRING NUMBER	Q - GPM	AF/YR	
1		0.000	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	0	0.000	
TANK #	GAL	AF	
1	10000	0.031	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	10000	0.031	
RESERVOIR #	GAL	AF	
1	0		
2	0		
3	0		
4	0		
5	0		
TOTAL=	0.000	0	
GROUND WATER RECHARGE	AF/YR/ACRE	PARCEL AC	AF/YR
See Groundwater Recharge Analysis	1.54	5.08	7.82
TOTAL AVAILABLE WATER =	2549023.87	G/YR	
TOTAL AVAILABLE WATER =	7.82	AF/YR	
TOTAL EXISTING WATER USE=	6.26	AF/YR	
REMAINING AVAILABLE WATER =	1.56	AF/YR	

WATER USE CALCULATIONS FOR PROPOSED USE					
RESIDENTIAL	#	FACTOR	AF/YR		
PRIMARY RESIDENCES=		0.5	0.00		
SECONDARY RESIDENCES=		0.2	0.00		
FARM LBR DWELLING (# OF PPL) =		0.06	0.00		
,		SUB TOTAL=	0.00		
NON- RESI	DENTIAL CAI	CULATIONS			
AGRICULTURAL	# ACRE	FACTOR	AF/YR		
VINEYARD IRRIGATION ONLY=		0.3	0.00		
VINEYARD HEAT PROTECTION=		0.25	0.00		
VINEYARD FROST PROTECTION=		0.25	0.00		
IRRIGATED PASTURE=		4	0.00		
ORCHARDS=		4	0.00		
LIVESTOCK (GOATS/CHICKENS)=	0.1	0.01	0.00		
		SUB TOTAL=	0.01		
LODGING	# GAL	FACTOR	AF/YR		
DOMESTIC WATER USE =	289988	SEE WW CALC	0.89		
LANDSCAPING WATER USE =	749406	SEE IRR. CALC	2.30		
		SUB TOTAL=	3.19		
INDUSTRIAL	# EMPL	FACTOR	AF/YR		
FOOD PROCESSING=	0	31	0.00		
PRINTING/ PUBLISHING=	0	0.6	0.00		
		SUB TOTAL=	0.00		
COMMERCIAL	# EMPL	FACTOR	AF/YR		
OFFICE SPACE=	0	0.01	0.00		
WAREHOUSE=	0	0.05	0.00		
		SUB TOTAL=	0.00		
	OSED USE T				
RESIDENTIAL=	0.00	AF/YR			
AGRICULTURAL=		AF/YR			
LODGING=	3.19	AF/YR			
INDUSTRIAL=	0.00	AF/YR			
COMMERCIAL=	0.00	AF/YR			
OTHER USAGE (LIST BELOW)		4.50.65			
RECYCLED WASTE WATER =		AF/YR			
	1042652	CNB			
TOTAL DRODOCED WATER HEE	1042652	G/YR			
TOTAL PROPOSED WATER USE= TOTAL PROPOSED WATER USE=	3.20	AF/YR			

WATER AVAILABILTY C			POSED
WELL NUMBER	Q - GPM	AF/YR	
1	45	72.590	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	45	72.590	
SPRING NUMBER	Q - GPM	AF/YR	
1		0.000	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	0	0.000	
TANK #	GAL	AF	
1	10000	0.031	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	10000	0.031	
RESERVOIR #	GAL	AF	
1	0		
2	0		
3	0		
4	0		
5	0		
TOTAL=	0	0.000	
GROUND WATER RECHARGE	AF/YR/ACRE	PARCEL AC	AF/YR
See Groundwater Recharge Analysis	1.54	5.08	7.82
TOTAL WATER AVAILABLE =	2549023.87	G/YR	
TOTAL WATER AVAILABLE =	7.82	AF/YR	
TOTAL PROPOSED WATER USE=	3.20	AF/YR	
REMAINING AVAILABLE WATER =	4.62	AF/YR	

CMPEngineering.com

Ground Water Recharge Analysis for the Capell School Lodging Project

Located at: 1191 Capell Valley Road Napa, CA 94558

Date: 7/22/2020

Project # 00055

<u>Legend</u>
Requires Input
Automatically Calculates
Important Value Automatically Calculates
Important Value Requires Input

Hit ctrl+alt+shift+F9 when finished.

GROUND WATER RECHARGE CALCULATIONS					
PAF	RCEL VARIA	BLES			
Parcel size =	5.08	ac			
Average annual rainfall (P) =	34.00	in (from napa county RSS)			
Total parcel average rainfall volume =	14.39	ac-ft/yr			
EVADO	TRANSPIRA	ION (F)			
Surface Type	Area (ac)	E (ac-ft)			
Vineyard =	0.00	0.00			
Orchard =	0.00	0.00			
Hay =					
Other Crops =	0.72	0.00			
Impervous Surfaces onto Grassland =	0.72	0.00			
Tatala	0.70	0.00			
Totals =	0.72	0.00			
Native plants area =	4.36	ac	l		
Native plants estimated coefficient =	0.35	coefficient			
Plant density =	80%	percent			
Native Plant Growth Cycle Factor =	0.70	factor			
Grass refernce ETo =	47.04		8 ITRC value typ yr)		
Native plant ETc =	11.52	in			
The state of the s					
Total annual native plant E =	3.35	ac-ft			
	0.00				
Total annual E for parcel =	3.35	ac- ft			
	RUNOFF (R)				
Average runoff relief coefficient =	8%	%			
Average runoff soil coefficient =	6%	%			
Average runoff vegitation coefficient =	6%	%			
Average runoff surface coefficient =	8%	%			
Total Runoff Coefficient =	28%	%			
Average annual rainfall =	14.39	ac-ft			
Runoff producing rainfall =	80%	%			
Total Annual Runoff (R) =	3.22	ac-ft			
ANNUAL CROUND WATE	D DECLIADO	E STODACE	: (C) _ D (D . T)		
ANNUAL GROUND WATE			: (3) = P-(K+E)		
Total Annaul Precipitation (P) =	14.39	ac-ft			
Total Annual Runoff (R) =	3.22	ac-ft			
Total Annual Evapotranpiration (E) =	3.35	ac-ft			
Total Annual Ground Recharge (S) =	7.82	ac-ft			
Annual Bookerge Bete Ber Asse	1 5 1	00 ft / vr / co			
Annual Recharge Rate Per Acre =	1.54	ac-ft / yr / ac			

CMPEngineering.com

Proposed Wastewater Flow Calculations for the Capell School Lodging Project

Located at: 1191 Capell Valley Road Napa, CA 94558

Date: 7/22/2020

Project # 00055

Legend

Requires Input

Automatically Calculates

Important Value Automatically Calculate

Important Value Requires Input

Hit ctrl + alt + shift + F9 when finished to recalc all formulas

Waste Flow Summary

The existing school wastewater system was under designed to handle a peak flow of 600 gallons per day of domestic wastewater. The proposed change in use will exceed this amount thus an additional wastewater system will be required. All proposed events will be serviced by portable toilets.

Dock Demostic Woots Flow Coloulations						
Peak Domestic Waste Flow Calculations Proposed Lodging Units Peak Domestic Waste Flows						
Total number of single bedroom lodging units =	4	lodging ur		13		
Total number of double bedroom lodging units =	5	lodging ur				
Total number of single bedroom caretaker units =	1	caretaker				
Peak wasteflow per lodging bedrooms =	106.00	gal/day/br				
Peak wasteflow per care taker bedrooms =	120.00	gal/day/bi				
Peak Lodging Units Domestic Waste Flow =	1604.00	gal/day/bl gal/day				
Proposed Employee Pe			e Flows			
Peak Employee Waste Flows	Jak Domes	tio vvasti	C 1 10W3			
Number of FT Employees =	4	#				
Number of PT Employees =	0	#				
FT employee daily domestic waste flow =	60.00	gal/day (1	5 a/p)			
PT employee daily domestic waste flow =	0.00	gal/day (8	• . ,			
Peak Employee Waste Flows =	60.00	gal/day	3/1/			
, ,	00100]9				
Total Combined Domestic Waste Flows =	1664	gal/day				
Annual Waste Flow	Volume (Calculati	ions			
Average Lodging Unit	s Domestic	c Waste	Flows			
Total number of single bedroom lodging units =	4	lodging units				
Total number of double bedroom lodging units =	5	lodging units				
Total number of single bedroom caretaker units =	1	caretaker units				
Total bedroom (br) count =	15	br				
Average wasteflow per bedroom =	50.00	gal/day/br				
Total Design Peak Domestic Waste Flows =	750.00	gal/day				
Total Design Peak Domestic Waste Flows =	273750	gal/yr				
Average Employee	Domestic \	Naste Fl	ows			
Peak Employee Waste Flows						
Number of FT Employees =	4	#				
Number of PT Employees =	0	#				
FT employee daily domestic waste flow =	30.00	gal/day (7	'.5 g/p)			
PT employee daily domestic waste flow =	0.00	gal/day (4	ł g/p)			
Emplyee Domestic Flow =	30.00	gal/day				
Total Design Peak Domestic Waste Flows =	10950	gal/yr				
Average Event Do	omestic Wa	aste Flov	VS			
Special Event Volumes	visitors	days/yr	flow/day	gallons		
Large Events =	150	6	3	2700		
Medium Events =	60	12	3	2160		
Other =			3	0		
Other 2 =			3	0		
Total Annual Event Visitor Waste Volume =	4860	gal/year	0.00			
Total Annual Waste Flow Volume =	289560	gal/yr	0.89	af		

Cameron@CMPEngineering.com CMPEngineering.com

Historical Wastewater Flow Calculations for the Capell School Lodging Project

Located at: 1191 Capell Valley Road Napa, CA 94558

Date: 7/22/2020

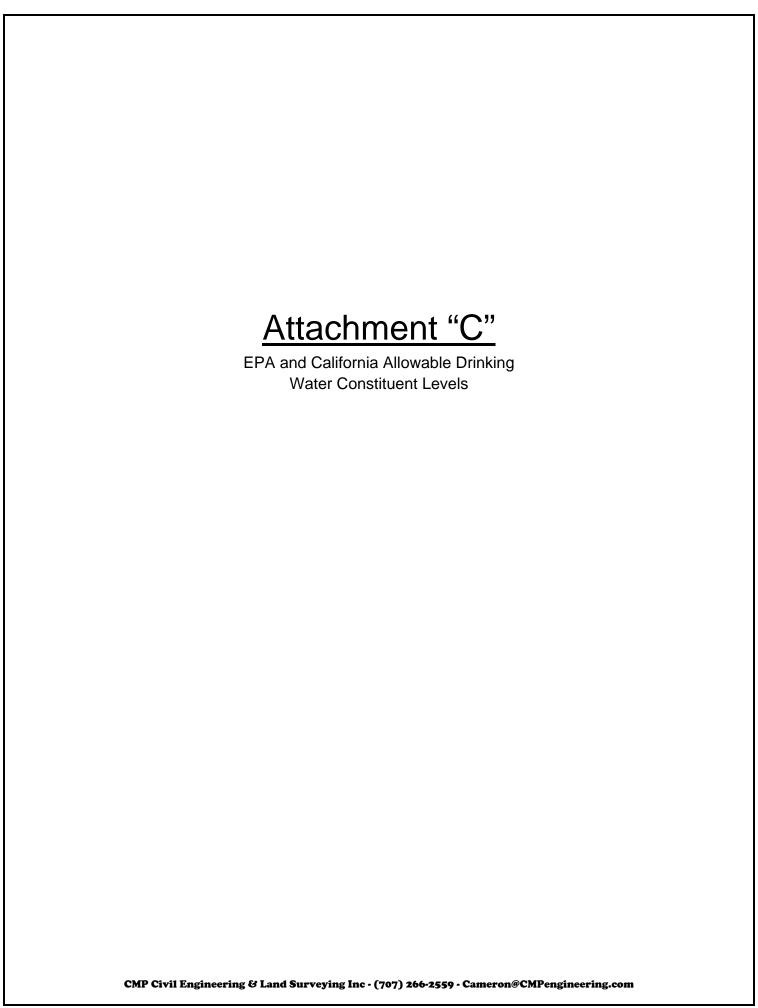
Project # 00055

Legend

Requires Input

Automatically Calculates

Important Value Automatically Calculate


Important Value Requires Input

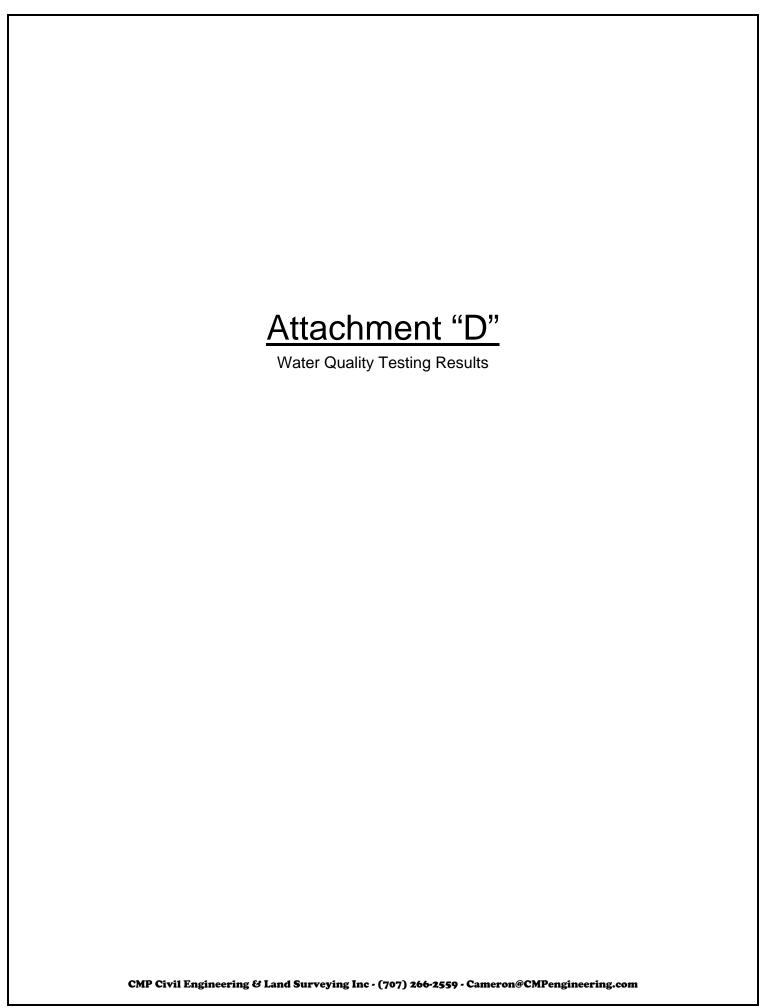
Hit ctrl + alt + shift + F9 when finished to recalc all formulas

Historical Waste Flow Summary

The subject property used to be a public school with a peak attendence of 90 students, 3 teachers, 2 part time aids and a part time grounds keeper. The calculated flows below are based on this.

Historical School Peak Don	nestic Was	te Flow	Calcula	ations		
Historical Student Peak Student Domestic Waste Flows						
Estimated peak number of students attending =	90	#				
Peak wasteflow per student =	20.00	gal/day/st	d			
Peak Student Waste Flow =	1800.00	gal/day				
Historical School Peak Employee Domestic Waste Flows						
Peak Employee Waste Flows		_				
Number of FT Employees =	3	#				
Number of PT Employees =	3	#				
FT employee daily domestic waste flow =	45.00	gal/day (1	5 g/p)			
PT employee daily domestic waste flow =	24.00	gal/day (8	3 g/p)			
Peak Employee Waste Flows =	69.00	gal/day				
Total Combined Domestic Waste Flows =	1869	gal/day		.1		
Historical School Annual W						
Historical Student Avera			e Flows			
Estimated peak number of students attending =	90	#				
Ave wasteflow per student =	10.00	gal/day/std				
Ave Student Waste Flow =	900.00	gal/day				
Total Design Peak Domestic Waste Flows =	328500 gal/yr					
Historical Employee Ave	rage Dome	estic Was	ste Flow	S		
Peak Employee Waste Flows		_				
Number of FT Employees =	3	#				
Number of PT Employees =	2	#				
FT employee daily domestic waste flow =	22.50	gal/day (8				
PT employee daily domestic waste flow =	8.00	gal/day (4	- g/p)			
Total Dimestic Flow =	30.50	gal/day				
Total Design Peak Domestic Waste Flows =	11133	gal/yr				
Historical Average Eve	ent Domest	ic Waste	Flows			
Special Event Volumes	visitors	days/yr	flow/day	gallons		
Large Events =	200	4	5	4000		
Medium Events =	50	12	5	3000		
Other =			5	0		
Other 2 =			5	0		
Total Annual Event Visitor Waste Volume =	7000	gal/year		•		
Total Annual Waste Flow Volume =	346633	gal/yr	1.06	af		

MAXIMUM CONTAMINANT LEVELS AND REGULATORY DATES FOR DRINKING WATER U.S. EPA VS CALIFORNIA NOVEMBER 2008


Contominant	U.S.	EPA	С	alifornia
Contaminant	MCL (mg/L)	Date ^a	MCL (mg/L)	Effective Date
Inorganics	•			
Aluminum	0.05 to 0.2 ^b	1/91	1	2/25/89
			0.2 ^b	9/8/94
Antimony	0.006	7/92	0.006	9/8/94
Arsenic	0.05	eff: 6/24/77	0.05	77 11/29/09
Asbestos	0.010 7 MFL ^c	eff: 1/23/06 1/91	0.010 7 MFL ^c	11/28/08 9/8/94
	1	eff: 6/24/77	1	77
Barium	2	1/91		
Beryllium	0.004	7/92	0.004	9/8/94
Cadmium	0.010	eff: 6/24/77	0.010	77
Cadilliaiii	0.005	1/91	0.005	9/8/94
Chromium	0.05	eff: 6/24/77	0.05	77
	0.1 1.3 ^d	1/91 6/91	1 ^b	77
Copper	1.3	6/91	1.3 ^d	12/11/95
	0.2	7/92	0.2	9/8/94
Cyanide		.,,-	0.15	6/12/03
Fluoride	4	4/86	2	4/98
Fluoride	2 ^b	4/86		
Lead	0.05 ^e	eff: 6/24/77	0.05 ^e	77
	0.015 ^d	6/91	0.015 ^d	12/11/95
Mercury Nickel	0.002	eff: 6/24/77 anded	0.002	77 9/8/94
Nitrate	(as N) 10	eff: 6/24/77	(as N03) 45	77
Nitrite (as N)	(as N) 10	1/91	(as 1103) 43	9/8/94
Total Nitrate/Nitrite (as N)	10	1/91	10	9/8/94
Perchlorate	-	-	0.006	10/18/07
	0.01	eff: 6/24/77	0.01	77
Selenium	0.05	1/91	0.05	9/8/94
Thallium	0.002	7/92	0.002	9/8/94
Radionuclides				
Uranium	30 ug/L	12/7/00	20 pCi/L	1/1/89
	F = 0:/l	-#- C/O4/77	20 pCi/L	6/11/06
Combined Radium - 226+228	5 pCi/L	eff: 6/24/77	5 pCi/L 5 pCi/L	77 6/11/06
Gross Alpha particle activity	15 pCi/L	eff: 6/24/77	15 pCi/L	77
(excluding radon & uranium)	10 001/2	011. 0/2 1/17	15 pCi/L	6/11/06
,	4 millirem/yr	eff: 6/24/77	50 pCi/L [†]	77
Gross Beta particle activity			4 millirem/yr	6/11/06
Strontium 00	8 pCi/L	eff: 6/24/77	8 pCi/L ^f	77
Strontium-90		now covered by Gross Beta	8 pCi/L [†]	6/11/06
	20,000 pCi/L	eff: 6/24/77	20,000 pCi/L [†]	77
Tritium		now covered by	20,000 pCi/L ^f	6/11/06
		Gross Beta		

Contaminant	U.S.	EPA	California					
Contaminant	MCL (mg/L)	Date ^a	MCL (mg/L)	Effective Date				
VOCS								
Benzene	0.005	6/87	0.001	2/25/89				
Carbon Tetrachloride	0.005	6/87	0.0005	4/4/89				
1,2-Dichlorobenzene	0.6	1/91	0.6	9/8/94				
1,4-Dichlorobenzene	0.075	6/87	0.005	4/4/89				
1,1-Dichloroethane	-	-	0.005	6/24/90				
1,2-Dichloroethane	0.005	6/87	0.0005	4/4/89				
1,1-Dichloroethylene	0.007	6/87	0.006	2/25/89				
cis-1,2-Dichloroethylene	0.07	1/91	0.006	9/8/94				
trans-1,2-Dichloroethylene	0.1	1/91	0.01	9/8/94				
Dichloromethane	0.005	7/92	0.005	9/8/94				
1,3-Dichloropropene	-	-	0.0005	2/25/89				
1,2-Dichloropropane	0.005	1/91	0.005	6/24/90				
	0.7	1/91	0.68	2/25/89				
Ethylbenzene			0.7	9/8/94				
			0.3	6/12/03				
Methyl-tert-butyl ether	-	-	0.005 ^b	1/7/99				
(MTBE)			0.013	5/17/00				
Monochlorobenzene	0.1	1/91	0.03	2/25/89				
Worldchioloberizerie			0.07	9/8/94				
Styrene	0.1	1/91	0.1	9/8/94				
1,1,2,2-Tetrachloroethane	-	-	0.001	2/25/89				
Tetrachloroethylene	0.005	1/91	0.005	5/89				
Toluene	1	1/91	0.15	9/8/94				
1,2,4 Trichlorobenzene	0.07	7/92	0.07	9/8/94				
. ,			0.005	6/12/03				
1,1,1-Trichloroethane	0.200	6/87	0.200	2/25/89				
1,1,2-Trichloroethane	0.005	7/92	0.032	4/4/89				
			0.005	9/8/94				
Trichloroethylene	0.005	6/87	0.005	2/25/89				
Trichlorofluoromethane	-	-	0.15	6/24/90				
1,1,2-Trichloro-1,2,2-	-	-	1.2	6/24/90				
Trifluoroethane								
Vinyl chloride	0.002	6/87	0.0005	4/4/89				
Xylenes	10	1/91	1.750	2/25/89				

O antomin ant	U.S. EPA		(California
Contaminant	MCL (mg/L)	Date ^a	MCL (mg/L)	Effective Date
SOCS				
Alachlor	0.002	1/91	0.002	9/8/94
Atrazine	0.003	1/91	0.003	4/5/89
			0.001	6/12/03
Bentazon	-	-	0.018	4/4/89
Benzo(a) Pyrene	0.0002	7/92	0.0002	9/8/94
Carbofuran	0.04	1/91	0.018	6/24/90
Chlordane	0.002	1/91	0.0001	6/24/90
Dalapon	0.2	7/92	0.2	9/8/94
Dibromochloropropane	0.0002	1/91	0.0001	7/26/89
			0.0002	5/3/91
Di(2-ethylhexyl)adipate	0.4	7/92	0.4	9/8/94
Di(2-ethylhexyl)phthalate	0.006	7/92	0.004	6/24/90
2,4-D	0.1	eff: 6/24/77	0.1	77
,	0.07	1/91	0.07	9/8/94
Dinoseb	0.007	7/92	0.007	9/8/94
Diquat	0.02	7/92	0.02	9/8/94
Endothall	0.1	7/92	0.1	9/8/94
Endrin	0.0002	eff: 6/24/77	0.0002	77
	0.002	7/92	0.002	9/8/94
Ethylene Dibromide	0.00005	1/91	0.00002	2/25/89
,	0.0000	., .	0.00005	9/8/94
Glyphosate	0.7	7/92	0.7	6/24/90
Heptachlor	0.0004	1/91	0.00001	6/24/90
Heptachlor Epoxide	0.0002	1/91	0.00001	6/24/90
Hexachlorobenzene	0.001	7/92	0.001	9/8/94
Hexachlorocyclopentadiene	0.05	7/92	0.05	9/8/94
Lindane	0.004	eff: 6/24/77	0.004	77
Ellidario	0.0002	1/91	0.0002	9/8/94
Methoxychlor	0.1	eff: 6/24/77	0.1	77
meanexy erner	0.04	1/91	0.04	9/8/94
		., .	0.03	6/12/03
Molinate	-	-	0.02	4/4/89
Oxamyl	0.2	7/92	0.2	9/8/94
			0.05	6/12/03
Pentachlorophenol	0.001	1/91	0.001	9/8/94
Picloram	0.5	7/92	0.5	9/8/94
Polychlorinated Biphenyls	0.0005	1/91	0.0005	9/8/94
Simazine	0.004	7/92	0.010	4/4/89
	0.00	.,32	0.004	9/8/94
Thiobencarb	- 1	-	0.07	4/4/89
			0.001 ^b	4/4/89
Toxaphene	0.005	eff: 6/24/77	0.005	77
	0.003	1/91	0.003	9/8/94
2,3,7,8-TCDD (Dioxin)	3x10 ⁻⁸	7/92	3x10 ⁻⁸	9/8/94
2,4,5-TP (Silvex)	0.01	eff: 6/24/77	0.01	77
_, ., (5 5)	0.05	1/91	0.05	9/8/94

Contaminant	U.S.	EPA	California				
Contaminant	MCL (mg/L) Date ^a		MCL (mg/L)	Effective Date			
Disinfection Byproduct	ts						
	0.100	11/29/79	0.100	3/14/83			
Total Trihalomethanes		eff: 11/29/83					
	0.080	eff: 1/1/02 ^g	0.080	6/17/06			
Haloacetic acids (five)	0.060	eff: 1/1/02 ^g	0.060	6/17/06			
Bromate	0.010	eff: 1/1/02 ^g	0.010	6/17/06			
Chlorite	1.0	eff: 1/1/02 ^g	1.0	6/17/06			
Treatment Technique							
Acrylamide	TTh	1/91	TTh	9/8/94			
Epichlorohydrin	TTh	1/91	TTh	9/8/94			

- a. "eff." indicates the date the MCL took effect; any other date provided indicates when USEPA established (i.e., published) the MCL.
- b. Secondary MCL.
- c. MFL = million fibers per liter, with fiber length > 10 microns.
- d. Regulatory Action Level; if system exceeds, it must take certain actions such as additional monitoring, corrosion control studies and treatment, and for lead, a public education program; replaces MCL.
- e. The MCL for lead was rescinded with the adoption of the regulatory action level described in footnote d.
- f. Gross beta MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ; Sr-90 MCL = 4 millirem/year to bone marrow; tritium MCL = 4 millirem/year to total body
- g. Effective for surface water systems serving more than 10,000 people; effective for all others 1/1/04.
- h. TT = treatment technique, because an MCL is not feasible.

NELAP/ORELAP Certification 4036

Thursday, March 29, 2018

Gil Pridmore Pridmore Bros. Inc. 1191 Capell VAlley Napa, CA 94558

Re

Lab Order:

T030808

Project ID:

CAPELL SCHOOL

Collected By: GIL PRIDMORE

PO/Contract #:

PD MC \$345.00

Dear Gil Pridmore:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, March 15, 2018. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Enclosures

3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of CALTEST ANALYTICAL LABORATORY

Page 1 of 4

ENVIRONMENTAL ANALYSES

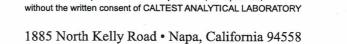
SAMPLE SUMMARY

Lab Order:

T030808

Project ID: **CAPELL SCHOOL**

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T030808001	CAPELL SCHOOL WELL HEAD	Water	03/15/2018 12:07	03/15/2018 13:01


3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

(707) 258-4000 • Fax (707) 226-1001 • e-mail: info@caltestlabs.com

Page 2 of 4

27 of 37

TERCHMENT ARE MICHELLS

Lab Order:

T030808

Project ID: CAPELL SCHOOL

NARRATIVE

General Qualifiers and Notes

Caltest authorizes this report to be reproduced only in its entirety. Results are specific to the sample(s) as submitted and only to the parameter(s) reported.

Caltest certifies that all test results for wastewater and hazardous waste analyses meet all applicable NELAC requirements; all microbiology and drinking water testing meet applicable ELAP requirements, unless stated otherwise.

All analyses performed by EPA Methods or Standard Methods (SM) 20th Edition except where noted (SMOL=online edition).

Caltest collects samples in compliance with 40 CFR, EPA Methods, Cal. Title 22, and Standard Methods.

Dilution Factors (DF) reported greater than '1' have been used to adjust the result, Reporting Limit (RL), and Method Detection Limit (MDL).

All Solid, sludge, and/or biosolids data is reported in Wet Weight, unless otherwise specified.

Filtrations performed at Caltest for dissolved metals (excluding mercury) and/or pH analysis are not performed within the 15 minute holding time as specified by 40CFR 136.3 table II.

Results Qualifiers: Report fields may contain codes and non-numeric data correlating to one or more of the following definitions:

ND - Non Detect - indicates analytical result has not been detected.

RL - Reporting Limit is the quantitation limit at which the laboratory is able to detect an analyte. An analyte not detected at or above the RL is reported as ND unless otherwise noted or qualified. For analyses pertaining to the State Implementation Plan of the California Toxics Rule, the Caltest Reporting Limit (RL) is equivalent to the Minimum Level (ML). A standard is always run at or below the ML. Where Reporting Limits are elevated due to dilution, the ML calibration criteria has been met.

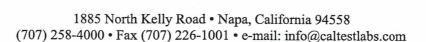
J - reflects estimated analytical result value detected below the Reporting Limit (RL) and above the Method Detection Limit (MDL). The 'J' flag is equivalent to the DNQ Estimated Concentration flag.

E - indicates an estimated analytical result value.

B - indicates the analyte has been detected in the blank associated with the sample.

NC - means not able to be calculated for RPD or Spike Recoveries.

SS - compound is a Surrogate Spike used per laboratory quality assurance manual.


NOTE: This document represents a complete Analytical Report for the samples referenced herein and should be retained as a permanent record thereof.

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 3 of 4

without the written consent of CALTEST ANALYTICAL LABORATORY

Lab Order:

T030808

Project ID:

CAPELL SCHOOL

ANALYTICAL RESULTS

Lab ID

T030808001

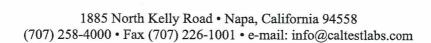
Date Collected
Date Received

3/15/2018 12:07 3/15/2018 13:01 Matrix

Water

Sample ID CAPELL SCHOOL WELL HEAD

Parameters	Result Units	R. L.	DF Prepared	Batch	Analyzed	Batch	Qua
pH, Electrometric Analysis	Analytical Method:	SM 4500-H+ B-00/-1	11		Analyzed by:	MYS	
pH	8.2 pH Uni	ts	1		03/25/18 14:48	BIO 19114	
Calculation, Hardness	Analytical Method:	Calculated			Analyzed by:	LM	
Hardness Calculation	33 mg/L	0.5	1		03/23/18 16:18		
Calculation, Total Anions	Analytical Method:	Calculated			Analyzed by:	DR	
Total Anions	4.3 meq/L		1		03/23/18 16:46	CALC	
Calculation, Total Cations	Analytical Method:	Calculated			Analyzed by:	LM	
Total Cations	4.5 meq/L		1		03/23/18 16:18	CALC	
Metals by ICPMS, Collision Mode, Total	Prep Method:	EPA 200.8			Prep by:	UKS	
	Analytical Method:	EPA 200.8			Analyzed by:	LM	
Arsenic	ND mg/L	0.00080	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Boron	3.6 mg/L	0.10	10 03/22/18 00:00	MPR 15782	03/26/18 16:44	MMS 8940	
Calcium	12 mg/L	2.0	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Iron	0.20 mg/L	0.10	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Magnesium	ND mg/L	2.0	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Manganese	0.013 mg/L	0.0020	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Potassium	ND mg/L	4.0	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Silica (as SiO2)	15 mg/L	4.0	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Sodium	88 mg/L	4.0	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Zinc	0.13 mg/L	0.080	4 03/22/18 00:00	MPR 15782	03/23/18 16:18	MMS 8940	
Electrical Conductance Analysis	Analytical Method:	SM 2510 B-97/-11			Analyzed by:	DR	
Conductivity	410 umhos/	cm 10	1		03/23/18 13:48	WET 9472	
Anions by Ion Chromatography	Analytical Method:	EPA 300.0			Analyzed by:	MYS	
Nitrogen, Nitrate (as N)	ND mg/L	0.1	1		03/16/18 01:29	WIC 6217	
Fluoride	0.35 mg/L	0.1	1		03/16/18 01:29	WIC 6217	
Chloride	7.8 mg/L	1	1		03/16/18 01:29	WIC 6217	
Sulfate (as SO4)	ND mg/L	0.5	1		03/16/18 01:29	WIC 6217	
Alkalinity, Total by Standard Methods	Analytical Method:	SM 2320 B-97/-11			Analyzed by:	DR	
Alkalinity, Total (as CACO3)	204 mg/L	10	1		03/23/18 16:46		
Hydroxide (as OH)	ND mg/L	2	1		03/23/18 16:46		
Bicarbonate (as HCO3)	244 mg/L	12	1		03/23/18 16:46		
Carbonate (as CO3)	ND mg/L	6	1		03/23/18 16:46		


3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of CALTEST ANALYTICAL LABORATORY

Page 4 of 4

The following information is from California Code of Regulations Title 22, Napa County Env. Health "Interpreting Drinking Water Test Results" and UC Davis Department of Land, Air, and Water Resources - Cooperative Extension. This information is provided for your convenience. Caltest does not provide consultation regarding the suitability of water for a given purpose.

Arsenic has a drinking water Maximum Contaminant Level (MCL) of 10 ug/L (ppb) or 0.010 mg/L (mqq)

Boron has an agricultural recommended limit and a state drinking water Action (Advisory) Limit of 1000 ug/L (ppb) or 1 mg/L (ppm). Boron affects the health and production of boron sensitive plants. Drinking water with greater than 10 times the Action Limit Level are recommended for removal from service.

Calcium and Magnesium are related to water hardness. See Hardness remarks.

Chloride has a drinking water Maximum Contaminant Level (MCL) of 600 mg/L, with a recommended level of 250 mg/L and a short-term limit of 600 mg/L.

Copper has a drinking water Maximum Contaminant Level (MCL) of 1000 ug/L (ppb) or 1 mg/L (ppm).

Electrical Conductance has a drinking water Maximum Contaminant Level (MCL) of 1,600 umhos/cm, with a recommended level of 900 umhos/cm and a short term limit of 2,200 umhos/cm. Electrical Conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25 degrees C.

Fluoride has a recommended level of 1.0 mg/L in temperate climates. Fluoride in concentrations greater than 3 mg/L can cause dental fluorosis (a brownish discoloration of the teeth).

Iron has a drinking water Maximum Contaminant Level (MCL) of 300 ug/L (ppb) or 0.3 mg/L (ppm).

Hardness is due primarily to calcium and magnesium carbonates and bi-carbonates. Up to 60 mg/L is SOFT. Between 60 to 120 mg/L is MODERATE (typically most desirable). Between 120 to 180 mg/L is HARD. Over 180 mg/L is VERY HARD.

Manganese has a drinking water Maximum Contaminant Level (MCL) of 50 ug/L (ppb) or 0.05 mg/L (ppm).

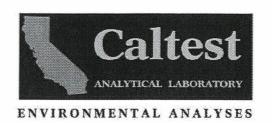
Sodium has a recommended limit of 100 mg/L. According to the American Heart Association, water containing more than 270 mg/L should not be consumed by those on a moderately restricted sodium diet.

Nitrate as N, has a drinking water Maximum Contaminant Level (MCL) of 10 mg/L. Nitrate as NO3 has a drinking water MCL of 45 mg/L.

Lead has a drinking water Action Limit of 15 ug/L (ppb) or 0.015 mg/L (ppm).

pH suggested level is 6.5 - 8.5.

Silica has a recommended limit of 70 mg/L. Silica in water may etch various household materials such as leaded crystal, marble, tile, windows, and porcelain.


Sulfate has a drinking water Maximum Contaminant Level (MCL) of 500 mg/L, with a recommended level of 250 mg/L and a short term limit of 600 mg/L.

Zinc has a drinking water Maximum Contaminant Level (MCL) of 5000 ug/L (ppb) or 5 mg/L (ppm).

www.CaltestLabs.com

1885 N. Kelly Rd, Napa CA 94558 (707) 258-4000

Email: Info@CaltestLabs.com

Dear Client:

Caltest provides a variety of water analyses, but cannot provide an opinion regarding the quality of the water or its suitability for any particular use. If you would like information, please feel free to contact any of the following suggested resources listed below.

Human Health Concerns:

EPA Safe Drinking Water Hotline	800/426-4791
---------------------------------	--------------

M	Vapa	County	Environmental	Health	707/253-4471

Sonoma County Environ	nental Health	707/565-6565
-----------------------	---------------	--------------

Irrigation Concerns:

University of California at Davis

Department of Land, Air, and Water Resources/
Cooperative Extension. Ask for Blaine Hanson
or Steve Grattan


Thank you for choosing Caltest for your water testing needs. Please feel free to contact us if we can provide you with any further testing assistance.

Sincerely, Caltest Analytical Laboratory

Todd M Albertson Vice President

(For your information, the next page contains various regulatory limits)

	1885 N. KELLY RC	AD • NAPA, CA 94558 •	· (707) 258-4000	• Fax (70	7) 226-100	01 • www.	.caltes	tlabs.co	m	LAB ORDER #:
Caltest	SAMPLECE	IATNI				P/	AGE	(OF	tokners
ANALYTICAL LABORATORY	SAMPLE CH OF CUSTO	PROJECT #/	JECT NAME	ne/11	Sci	h001	<i>!</i>			0.#
CLIENT: D 1		REPORT ATTN:	2.1	0000	. a L			ANAL	YSES	REQUESTED
PridmoRa	BROS	LNC DENN TO	Tricimon e	62	1011.00	11.5		_ /	//	TURN-AROUND
ADDRESS: 1705 Cape	Il Valley	Napa Ca	9455	8			-N			TIME ☐ STANDARD
BILLING ADDRESS:	79						oi/			RUSH
PHONE #: FAX PHONE 224	8104 SÁMPL	ER (PRINT & SIGN NAME):	note			- Rockard	7/			DUE DATE:
CALTEST DATE TIME SAMPLED MATRIX		IVE SAMPLE IDENTIFIC		CLIENT LAB#	COMP. or GRAB	20%/				REMARKS
3/15/1207		Capell Schoo) Wellfrag							
	3							K. 10.	1	10, \$345.00
										91918
					:					
			2:							
	7									
By submittal of sample(s), client	agrees to abide by th	E Terms and Conditions set	forth on the rever	e of this	document.	- Instantal	The little	1	<u></u>	•
RELINQUISHED BY	DATECTIME	, RECEIVED I			IQUISHED B			DATE/T	IME	RECEIVED BY
Glore	3/15 17	or Colder								
				2						
BC. BIO WC MET CC: AA SV_VOA	-	VOA TEMP: 13.29		/ N	INTACT:	<u> </u>	DV Ct	= Low R. V = Drinkin ONTAINE	L.s, Aquing Water;	eous Nondrinking Water, Digested Metals; ueous Nondrinking Water, Digested Metals; ; SL = Soil, Sludge, Solid; FP = Free Product PES: AL = Amber Liter; AHL = 500 ml
SIL: HP PT QT V W/HNO, H,SO, NAOF							(P	lastic); SJ	= Soil Ja	lastic); QT=Quart (Plastic); HG = Half Gallor ar; B4 = 4 oz. BACT; BT = Brass Tube; VOA Other Type Container
PIL: HNO, H,SO, NaOH								VA;	J. J C	erren Alexanderren

DAVE BESS PUMP & WELL

LIC.# C-57-C-10 487027

WATER WELL TEST REPORT# W-17-039 1115 MT GEORGE AVE. NAPA, CALIF. 94558 707-226-2539 / 253-0574

LOCATION (well address):	1191 Capell Valley Rd	Napa CA	Date	05Oct2017
TEST REQUESTOR:	Gil Pridmore		-	

SURFACE INSPECTION

CASING DIA. 6" pvc EST, AGE OF WELL 12 Years (Per Well Log) DEPTH OF WELL 250' (Per Well Log) SANITARY SEAL (functional) PIPING SYSTEM (functional) ELECTRICAL SYSTEM (functional) PRESSURE TANKS (functional) WELL SIZE OF PUMP 2 (HP)

OPERATING VOLTS: 239 AMPS: R: 2.8 B: 9.5 Y:P 10.0

FLOW TEST DATA

METHOD OF TEST: 2 HOUR OPEN FLOW DISCHARGE TEST USING THE INSTALLED PUMP AND EXISTING EQUIPMENT. (TEST EQUIPMENT USED), 2" FLOW METER, 2" THROTTLING DISCHARGE VALVE, 0/200 PRESSURE GAGE AND A POWERS WELL DEPTH STATIC METER.

- The Particular of the Control of t		
TIME	RATE (GPM)	WATER LEVEL
14:00	50	20ft
15:20	43	56ft
15:40	43	61ft
16:00	43	61ft

STATIC LEVEL PRIOR TO TEST 20 FT STATIC LEVEL @ END OF TEST 61 FT TOTAL DRAW DOWN DURING THIS TEST WAS 41 ft (AVG.)GALLONS PER MIN. 44.75 FOR 2 HOURS OF TESTING.

GENERAL COMMENTS

Well and well equipment in working order @ time of testing. The well fills a storage tank and is pressurized from the storage tank with 2 Goulds Booster pumps One 3/4 HP (HB707) and 1 1hp (HB2510). Pressure Tanks are showing signs of deterioration (Rusting) and should be replaced. It seems that all controls are low voltage. The water is treated with a Culligan system, it is unknown if its operational or being serviced. Some information was taken from the well completion report Dated 6/28/2006 Log #e039625. Pump Depth is unknown at this time. Flow Meter Installed after the Booster pumps reads 5155799 Gallons.

TEST CONDUCTED BY:	DATE: 080ct2017
(optional) Bacteria sampled Yes No _X_	Chemical sampled: Yes No _X

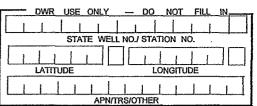
Disclaimer: The data and conclusions provided herein are based upon the best information available to this company using standards and accepted practices of the water well drilling industry. However, well yield conditions are subject to dramatic changes in short periods of time due to usage and recharging of aquifers, etc. Therefore, the data and conclusions taken during this test are only valid of the day of the test and should not be relied upon to predict either the future quantity or quality of the well. This company makes no warranties either expressed or implied as to future water production and expressly disclaims and excludes any liability for consequential or incidental damages arising out of the breach of any expressed or implied warranty of future water production or out of any future use reported by the customer.

ORIGINAL File with DWR

STATE OF CALIFORNIA

COMPLETIONRefer to Instruction Pamphlet WELL REPORT

Page 1 of 1


Owner's Well No. 1-'06

No. e039625

Ended 7/13/2006 Date Work Began 6/29/2006

Local Permit Agency Napa County Environmental Mgmt
Permit No. E06-01092 Permit Date 6/

Permit Date 6/28/2006

Perm	it No. 드	GEOLOGIC LOG Permit Date 6/28/2006	AFRITATION
<u> </u>		GEOLOGIC LOG	WELL OWNER
ORIENTA	TION (≰)	VERTICAL HORIZONTAL ANGLE(SPECIFY)	Name Welley Walfred School Drafito
<u> </u>		DRILLING ROTARY FLUID BENTONITE	Mailing Address Malitime In Avenue
DEPTI- SURI	FACE	DESCRIPTION	Capa 94558
Ft. t) Ft.	Describe material, grain, size, color, etc.	CITY STATE ZIP
0		BROWN CLAY	Address 1191 Capell Valley Road
54	80	GREEN CLAY WITH SANDSTONE	City Napa CA
80	250	90% SANDSTONE/ 10% SHALE	CountyNapa
250	260	90% SHALE & CLAY/ 10% SANDSTONE	APN Book 032 Page 130 Parcel 026
			Township Range Section
			Latitude Section
			Latitude _
			LUCATION SKETCH——ACTIVITY (🗹) —
		-	They walk
			MODIFICATION/REPAIR —— Deepen
			Deepen — Other (Specify)
			DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG"
	· · · · · · · · · · · · · · · · · · ·		1 1 1 3
		······································	PLANNED USES (∠) WATER SUPPLY
	~		SCHOOL Sometic A Public Industrial
			MONITORING
			WELL TEST WELL
			RATION PROTECTION HEAT EXCHANGE
			8 V DIRECT PUSH
	-		INJECTION
			VAPOR EXTRACTION
			SPÁRGING
			Illustrate or Describe Distance of Well from Roads Buildings.
			Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE.
			WATER LEVEL & YIELD OF COMPLETED WELL
			DEPTH TO FIRST WATER 70 (Ft.) BELOW SURFACE
-			
		***************************************	DEPTH OF STATIC WATER LEVEL 15 (Ft.) & DATE MEASURED 7/13/2006
TOTAL DE	DTH OF D	ORING 260 (Feet)	ESTIMATED YIELD * 45 (GPM) & TEST TYPE AIR LIFT
		in the same of the	TEST LENGTH 3 (Hrs.) TOTAL DRAWDOWN N/A (Ft)
IOIAL DE	rin of C	OMPLETED WELL 250 (Feet)	May not be representative of a well's long-term yield.

	PTH	BORE.		CASING (S)					DEPTH			ANNULAR MATERIAL					
FROM St		BORE - HOLE DIA. (Inches)	BLANK	-	-NOS		MATERIAL / GRADE	INTERNAL DIAMETER (Inches)	GAUGE OR WALL THICKNESS	SLOT SIZE IF ANY (Inches)	FRO	A SU to	RFACE 	CE- MENT	BEN- TONIT		/PE FILTER PACK (TYPE/SIZE)
0	260	12	60	တ	Ē	ᆵ		(inches)	ITICKINESS	(inches)	ļ	0	5	√	<u>(₹)</u>	<u>(₹)</u>	CONCRETE
												5	22		1		GROUT
0	70		V				PVC F480	6	SDR-21		2	2	55	1			CEMENT
70	170			√			PVC F480	6	SDR-21	.032	5	5	250			1	#6 SAND
170	190		~				PVC F480	6	SDR-21								
190	250			1			PVC F480	6	SDR-21	.032							

ATTACHMENTS (∠)		CE	RTIFICATION STATEM	ENT —	
Geologic Log	I, the undersigned, certify that t	this report is complete	and accurate to the best of my kn	owledge and belief.	
Well Construction Diagram	NAME HUCKFELDT V	NELL DRILLING.	, INC.		
Geophysical Log(s)	(PERSON, FIRM, OR (
Soil/Water Chemical Analysis	2110 Penny Lane		Napa	CA	94559
Other	ADDRESS	Um Hudel	P/A CIT		
ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.	Julyingu		K/DI	07/14/06	439-746
ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.	WELL DRILLER/AUTI	HORIZED REPRESE	TATIVE	DATE SIGNED	C-57 LICENSE NUMBER

CA Drinking Water Watch

Links

Water System Details

Water System Details

Water System Facilities

Principal County Served : NAPA **Primary Source:**

Monitoring Schedules

Status:

Activity Date:

Monitoring Results

Monitoring Results By

Analyte

Lead And Copper Sample

Summary Results

Violations/Enforcement

Actions

Site Visits

Consumer Confidence **Reports**

Return Links

Water System Search

County Map

Glossary

Water System No. : CA2800633 Federal Type: NP **Water System Name:** CAPELL VALLEY SCHOOL State Type: NC

Ι

02-28-1995

	Water System Contacts					
Туре	Address	Phone	Email - Web Address			
Physical Location Contact	CA2800633-CAPELL VALLEY SCHOOL					

Division of Drinking Water District / County Health Dept. Info

Name	Phone	Email	Address
LPA58 - NAPA COUNTY	707-253-4471	stacey.harrington@countyofnapa.org	1195 Third Street, Ste. 210 NAPA CA 94559

Annual Operating Periods & Population Served

		End Month		Population Type	Population Served
1	1	10	21	т	30

Service Connections

Туре	Count	Meter Type	Meter Size Measure
СВ	1	UN	0

Sources of Water

Name	Type Code	Status

Service Areas

Code	Name
Т	RECREATION AREA

WELL 01 WL I

Water Purchases

Seller Water System No.	Water System Name	Seller Facility Type	Seller State Asgn ID No.	Buyer Facility Type	Buyer State Asgn ID No.
-------------------------------	-------------------	----------------------------	-----------------------------	---------------------------	----------------------------

CMP Civil Engineering & Land Surveying Inc. 1607 Capell Valley Road Napa, CA 94558 (707) 266-2559 Cameron@CMPengineering.com

Preliminary Water System Technical Report pertaining to Section 116527 of the Health and Safety Code for the Pridmore Property (Formally Capell Valley School)

1191 Capell Valley Road

Napa, CA 94558

APN: 032-130-026

Prepared By:

CMP Civil Engineering & Land Surveying Inc.

1607 Capell Valley Road

Napa, CA 94558

(707) 266-2559

Date: 7/22/2020

PROFESSIONAL REPORTED TO PROFESSIONAL REPORTED

Jul 22, 2020

CMP Civil Engineering & Land Surveying Inc · (707) 266-2559 · Cameron@CMPengineering.com

Table of Contents

Description	Page
	_
Title Page	1
Table of Contents	2
Water System Feasibility Report	3 – 4
 Attachment "A" Existing Water System Documentation 	5 – 14
 Attachment "B" Well Location Map 	15 – 16
 Attachment "C" Well Yield Reports 	17 – 18
 Attachment "D" Water Availability Calcs and Supporting Docs 	18 – 26

CMP Civil Engineering & Land Surveying - (707) 266-2559 - Cameron@CMP engineering.com

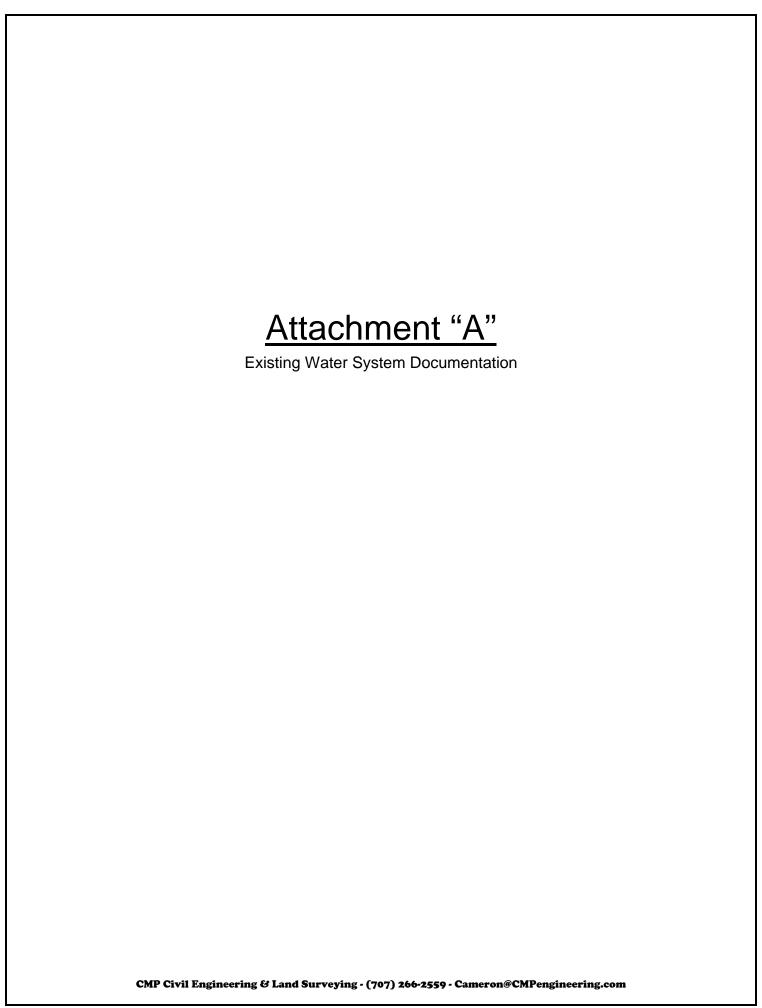
Existing Water System General Descriptions

The existing water system, officially called the Capell Valley School Water System (CA2800633), historically supplied water to the Capell Valley Elementary School. Now that the school has been closed down we would like to use the existing water system to supply potable water to the proposed tourist lodging units on the subject site. The water source for the existing water system is an existing 45 gallon well which pumps to a 10,000 gallon water tank.

Type of Water System and Reason it is required

The type of public water system both for the existing and proposed use is a Transient Non-Community water system. The public water system is required because the proposed tourists and associated employee counts is expected to be above 25 people per day for more than 60 days per year.

Required Technical Sections per 116527 of the Health and Safety Code


- <u>List of Public Water Systems within 3 mile of Project along public right of ways.</u>
 1.1. Capell Valley School Water System (CA2800633).
- 2. Feasibility of connecting to above listed public water systems
 - 2.1. We are proposing to connect to the water system listed in 1.1. Applicant owns the Capell Valley School Water System so now permissions required.
- 3. Actions taken to secure water from a public water system
 - 3.1. Applicant purchased the Capell Valley School and said onsite water system. Please see existing water system details in Attachment "A".
- 4. Source(s) of domestic water for new public water system
 - 4.1. Well #1 is a 45 gallons per minute well located on the southeastern portion of the subject property. Please see the well location map included in Attachment "B" and the well yield test in Attachment "C".
- 5. Construction and operation costs of water system
 - 5.1. The water system is existing so no new construction costs are expected however it is estimated that the water system would cost \$40,000 to replace today if it was necessary. It is expected that the system will have a usable lifespan of 30 years. It is expected to cost \$500 annually to operate, maintain and properly sample and test the water. It is expected that the system will cost roughly \$62,000 to replace 30 years from now. To have this money available 30 years from now, \$2134 must be set aside in a 0% annual interest rate account for the next 30 years. Thus it will cost an estimated \$2634 per year to own, operate, maintain and eventually replace the subject water system. The

- proposed tourist lodging operation should produce adequate funds to meet the financial demands of this water system.
- 6. Cost comparison, connecting to existing public system vs. create new
 - 6.1. A cost comparison is not applicable because the applicant is already connected to a public water system.
- 7. Actions taken to secure managerial and operational oversite
 - 7.1. Request for managerial and operational oversite is not applicable because the existing water system is already operated an managed by the applicant.
- 8. Twenty year water use analysis
 - 8.1. It is expected that this system will use a maximum of 3.20 acre feet of water per year for the next 20 years which comes to maximum of 64.0 acre feet of water required over the entire 20 years. To verify the proposed water system can provide this it must be compared to two different scenarios, the available flow of the well listed in 1.1 and the ground water recharge rate for the property(s) the well serves.
 - 8.2. First, the source well listed in 1.1 is rated at 45 gallons per minute which equates to 72.59 acre feet per year, which then equates to a 20 year total available water of 1451.8 acre feet. Comparing this to the above required 20 year total of 64.0 acre feet it can be seen that the well itself can provide more than enough water.
 - 8.3. Secondly the worst case scenario ground water recharge rate for the subject property is 7.82 acre feet per year, please see the water availability calculations located in Attachment "D" for further details. The above recharge rate equates to a 20 year total available water of 156.4 acre feet. Comparing this to the above required 20 year total of 64.0 acre feet it can be seen that the ground water recharge rate will provide more than enough water.
 - 8.4. The conclusion of this section is that the water supply to the existing system is more than enough for the proposed use.
- 9. Local Agency Formation Commission (LAFCO) documentation
 - 9.1. Not applicable, the public water system is existing and onsite

Overall Conclusions

The only viable option for the subject project is to use and maintain the existing Transient Non-Community Water System located onsite.

.

CA Drinking Water Watch

Links

Water System Details

Water System Details

Water System No. : Water System Name :

CA2800633

Federal Type :

NP NC

Water System Facilities

Water System Name : CAPELL VALLEY SCHOOL Principal County Served : NAPA

State Type : Primary Source :

NC

Monitoring Schedules

Status:

I

Activity Date :

02-28-1995

Monitoring Results

Monitoring Results By Analyte

<u>Lead And Copper Sample</u> Summary Results

Violations/Enforcement

<u>Actions</u>

Site Visits

<u>Consumer Confidence</u> <u>Reports</u>

Return Links

Water System Search

County Map

Glossary

	Water System Contacts						
Туре	Address	Phone	Email - Web Address				
Physical Location Contact	CA2800633-CAPELL VALLEY SCHOOL						

Division of Drinking Water District / County Health Dept. Info

Name	Phone	Email	Address
LPA58 - NAPA COUNTY	707-253-4471	stacey.harrington@countyofnapa.org	1195 Third Street, Ste. 210 NAPA CA 94559

Annual Operating Periods & Population Served

		End Month		Population Type	Population Served
1	1	10	21	т	30

Service Connections

Туре	Count	Meter Type	Meter Size Measure
СВ	1	UN	0

Sources of Water

Name	Type Code	Status

Service Areas

Code	Name
Т	RECREATION AREA

WELL 01 WL I

Water Purchases

Seller Water Water System No.	Seller Facility Type	Seller State Asgn ID No.	Buyer Facility Type	Buyer State Asgn ID No.
-------------------------------	----------------------------	-----------------------------	---------------------------	----------------------------

NELAP/ORELAP Certification 4036

Thursday, March 29, 2018

Gil Pridmore Pridmore Bros. Inc. 1191 Capell VAlley Napa, CA 94558

Re

Lab Order: Project ID:

T030808

CAPELL SCHOOL

Collected By: GIL PRIDMORE

PO/Contract #:

PD MC \$345.00

Dear Gil Pridmore:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, March 15, 2018. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Enclosures

3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of CALTEST ANALYTICAL LABORATORY

Page 1 of 4

ENVIRONMENTAL ANALYSES

SAMPLE SUMMARY

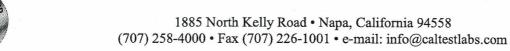
Lab Order:

T030808

Project ID:

CAPELL SCHOOL

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T030808001	CAPELL SCHOOL WELL HEAD	Water	03/15/2018 12:07	03/15/2018 13:01


3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of CALTEST ANALYTICAL LABORATORY

Page 2 of 4

ENVIRONMENTAL ANALYSES

NARRATIVE

Lab Order:

T030808

Project ID: CAPELL SCHOOL

General Qualifiers and Notes

Caltest authorizes this report to be reproduced only in its entirety. Results are specific to the sample(s) as submitted and only to the parameter(s) reported.

Caltest certifies that all test results for wastewater and hazardous waste analyses meet all applicable NELAC requirements; all microbiology and drinking water testing meet applicable ELAP requirements, unless stated otherwise.

All analyses performed by EPA Methods or Standard Methods (SM) 20th Edition except where noted (SMOL=online edition).

Caltest collects samples in compliance with 40 CFR, EPA Methods, Cal. Title 22, and Standard Methods.

Dilution Factors (DF) reported greater than '1' have been used to adjust the result, Reporting Limit (RL), and Method Detection Limit (MDL).

All Solid, sludge, and/or biosolids data is reported in Wet Weight, unless otherwise specified.

Filtrations performed at Caltest for dissolved metals (excluding mercury) and/or pH analysis are not performed within the 15 minute holding time as specified by 40CFR 136.3 table II.

Results Qualifiers: Report fields may contain codes and non-numeric data correlating to one or more of the following definitions:

ND - Non Detect - indicates analytical result has not been detected.

RL - Reporting Limit is the quantitation limit at which the laboratory is able to detect an analyte. An analyte not detected at or above the RL is reported as ND unless otherwise noted or qualified. For analyses pertaining to the State Implementation Plan of the California Toxics Rule, the Caltest Reporting Limit (RL) is equivalent to the Minimum Level (ML). A standard is always run at or below the ML. Where Reporting Limits are elevated due to dilution, the ML calibration criteria has been met.

J - reflects estimated analytical result value detected below the Reporting Limit (RL) and above the Method Detection Limit (MDL). The 'J' flag is equivalent to the DNQ Estimated Concentration flag.

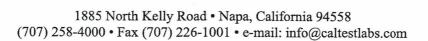
E - indicates an estimated analytical result value.

B - indicates the analyte has been detected in the blank associated with the sample.

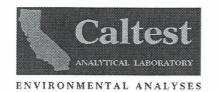
NC - means not able to be calculated for RPD or Spike Recoveries.

SS - compound is a Surrogate Spike used per laboratory quality assurance manual.

NOTE: This document represents a complete Analytical Report for the samples referenced herein and should be retained as a permanent record thereof.


3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,


without the written consent of CALTEST ANALYTICAL LABORATORY

Page 3 of 4

ANALYTICAL RESULTS

Lab Order:

T030808

Project ID:

CAPELL SCHOOL

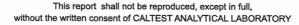
Lab ID T030808001 Sample ID CAPELL SCHOOL WELL

HEAD

Date Collected 3/15/2018 12:07

Date Received 3/15/2018 13:01 Matrix Water

Parameters	Result Units	R. L.	DF Prepared	Batch	Analyzed	Batch	Qual
pH, Electrometric Analysis pH	Analytical Method: 8.2 pH Uni	SM 4500-H+ B-00/-1	1		Analyzed by: 03/25/18 14:48		
Calculation, Hardness Hardness Calculation	Analytical Method: 33 mg/L	Calculated 0.5	1		Analyzed by: 03/23/18 16:18		
Calculation, Total Anions Total Anions	Analytical Method: 4.3 meq/L	Calculated	1		Analyzed by: 03/23/18 16:46		
Calculation, Total Cations Total Cations	Analytical Method: 4.5 meq/L	Calculated	1		Analyzed by: 03/23/18 16:18		
Metals by ICPMS, Collision Mode, Total	Prep Method:	EPA 200.8			Prep by:	UKS	
Arsenic Boron Calcium Iron Magnesium Manganese Potassium Silica (as SiO2) Sodium Zinc	Analytical Method:	EPA 200.8 0.00080 0.10 2.0 0.10 2.0 0.0020 4.0 4.0 4.0 0.080	4 03/22/18 00:00 10 03/22/18 00:00 4 03/22/18 00:00	MPR 15782 MPR 15782 MPR 15782 MPR 15782 MPR 15782 MPR 15782 MPR 15782 MPR 15782	Analyzed by: 03/23/18 16:18 03/26/18 16:44 03/23/18 16:18 03/23/18 16:18 03/23/18 16:18 03/23/18 16:18 03/23/18 16:18 03/23/18 16:18 03/23/18 16:18 03/23/18 16:18	MMS 8940 MMS 8940 MMS 8940 MMS 8940 MMS 8940 MMS 8940 MMS 8940 MMS 8940	
Electrical Conductance Analysis Conductivity	Analytical Method: 410 umhos/	SM 2510 B-97/-11 cm 10	1		Analyzed by: 03/23/18 13:48		
Anions by Ion Chromatography Nitrogen, Nitrate (as N) Fluoride Chloride Sulfate (as SO4)	Analytical Method: ND mg/L 0.35 mg/L 7.8 mg/L ND mg/L	EPA 300.0 0.1 0.1 1 0.5	1 1 1		Analyzed by: 03/16/18 01:29 03/16/18 01:29 03/16/18 01:29 03/16/18 01:29	WIC 6217 WIC 6217 WIC 6217	
Alkalinity, Total by Standard Methods Alkalinity, Total (as CACO3) Hydroxide (as OH) Bicarbonate (as HCO3) Carbonate (as CO3)	Analytical Method: 204 mg/L ND mg/L 244 mg/L ND mg/L	SM 2320 B-97/-11 10 2 12 6	1 1 1		Analyzed by: 03/23/18 16:46 03/23/18 16:46 03/23/18 16:46 03/23/18 16:46	WTI 3032 WTI 3032 WTI 3032	


3/29/2018 14:04

REPORT OF LABORATORY ANALYSIS

Page 4 of 4

The following information is from California Code of Regulations Title 22, Napa County Env. Health "Interpreting Drinking Water Test Results" and UC Davis Department of Land, Air, and Water Resources - Cooperative Extension. This information is provided for your convenience. Caltest does not provide consultation regarding the suitability of water for a given purpose.

Arsenic has a drinking water Maximum Contaminant Level (MCL) of 10 ug/L (ppb) or 0.010 mg/L (mqq)

Boron has an agricultural recommended limit and a state drinking water Action (Advisory) Limit of 1000 ug/L (ppb) or 1 mg/L (ppm). Boron affects the health and production of boron sensitive plants. Drinking water with greater than 10 times the Action Limit Level are recommended for removal from service.

Calcium and Magnesium are related to water hardness. See Hardness remarks.

Chloride has a drinking water Maximum Contaminant Level (MCL) of 600 mg/L, with a recommended level of 250 mg/L and a short-term limit of 600 mg/L.

Copper has a drinking water Maximum Contaminant Level (MCL) of 1000 ug/L (ppb) or 1 mg/L (ppm).

Electrical Conductance has a drinking water Maximum Contaminant Level (MCL) of 1,600 umhos/cm, with a recommended level of 900 umhos/cm and a short term limit of 2,200 umhos/cm. Electrical Conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25 degrees C.

Fluoride has a recommended level of 1.0 mg/L in temperate climates. Fluoride in concentrations greater than 3 mg/L can cause dental fluorosis (a brownish discoloration of the teeth).

Iron has a drinking water Maximum Contaminant Level (MCL) of 300 ug/L (ppb) or 0.3 mg/L (ppm).

Hardness is due primarily to calcium and magnesium carbonates and bi-carbonates. Up to 60 mg/L is SOFT. Between 60 to 120 mg/L is MODERATE (typically most desirable). Between 120 to 180 mg/L is HARD. Over 180 mg/L is VERY HARD.

Manganese has a drinking water Maximum Contaminant Level (MCL) of 50 ug/L (ppb) or 0.05 mg/L (ppm).

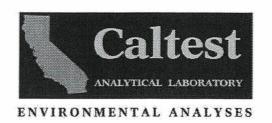
Sodium has a recommended limit of 100 mg/L. According to the American Heart Association, water containing more than 270 mg/L should not be consumed by those on a moderately restricted sodium diet.

Nitrate as N, has a drinking water Maximum Contaminant Level (MCL) of 10 mg/L. Nitrate as NO3 has a drinking water MCL of 45 mg/L.

Lead has a drinking water Action Limit of 15 ug/L (ppb) or 0.015 mg/L (ppm).

pH suggested level is 6.5 - 8.5.

Silica has a recommended limit of 70 mg/L. Silica in water may etch various household materials such as leaded crystal, marble, tile, windows, and porcelain.


Sulfate has a drinking water Maximum Contaminant Level (MCL) of 500 mg/L, with a recommended level of 250 mg/L and a short term limit of 600 mg/L.

Zinc has a drinking water Maximum Contaminant Level (MCL) of 5000 ug/L (ppb) or 5 mg/L (ppm).

www.CaltestLabs.com

1885 N. Kelly Rd, Napa CA 94558 (707) 258-4000

Email: Info@CaltestLabs.com

Dear Client:

Caltest provides a variety of water analyses, but cannot provide an opinion regarding the quality of the water or its suitability for any particular use. If you would like information, please feel free to contact any of the following suggested resources listed below.

Human Health Concerns:

EPA Safe Drinking	Water Hotline	800/426-4791
-------------------	---------------	--------------

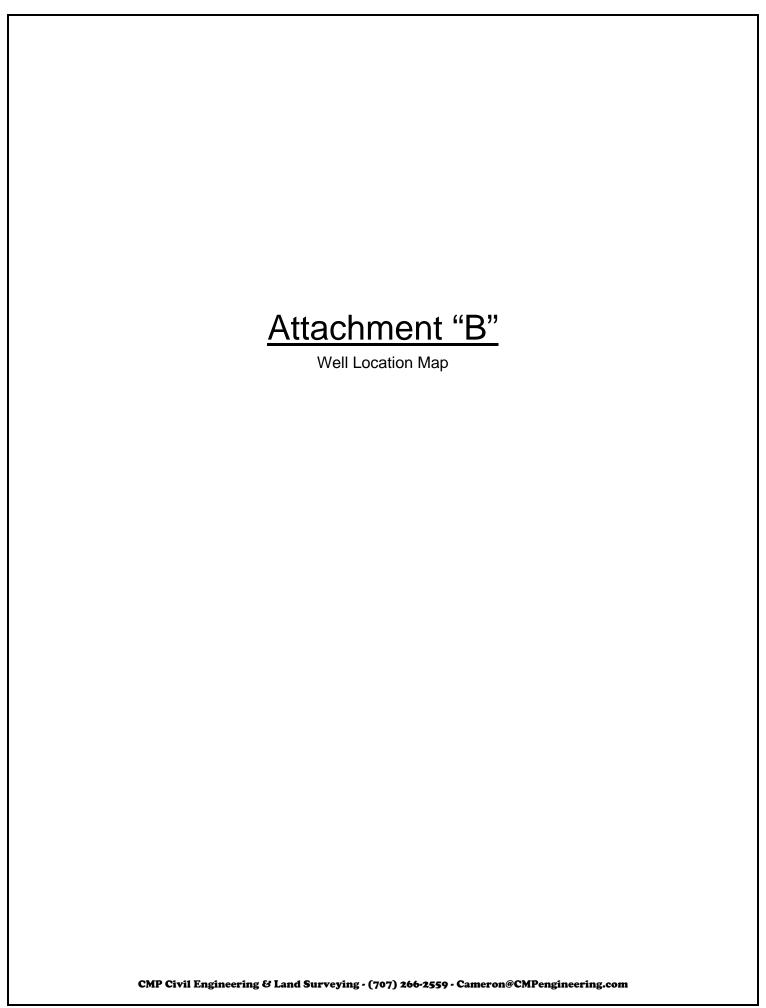
Napa County Environmental Health 707/253-4471

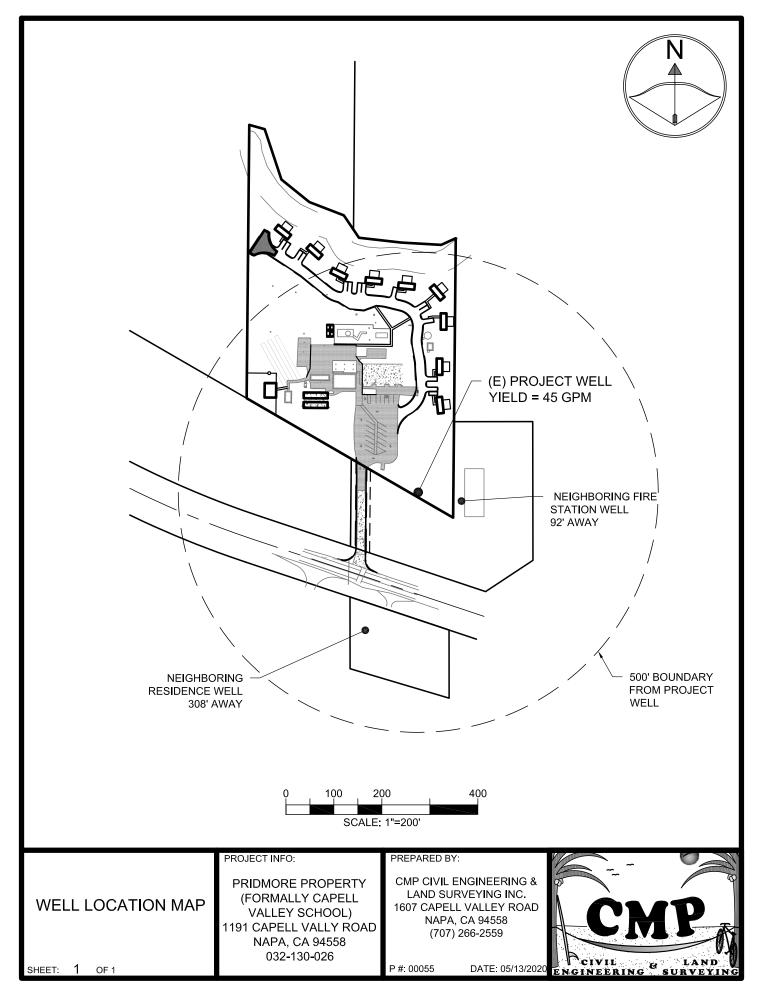
Sonoma County Environmental Health 707/565-6565

Irrigation Concerns:

University of California at Davis

Department of Land, Air, and Water Resources/
Cooperative Extension. Ask for Blaine Hanson
or Steve Grattan


Thank you for choosing Caltest for your water testing needs. Please feel free to contact us if we can provide you with any further testing assistance.


Sincerely, Caltest Analytical Laboratory

Todd M Albertson Vice President

(For your information, the next page contains various regulatory limits)

	1885 N. KELLY ROA	AD • NAPA, CA 94558 • (707) 258-40	000 • Fax (70'	7) 226-10	01 • www.c	caltestl	abs.con	n	LAB ORDER #:
Caltest	SAMPLE CH	AIN			PA	GE	c	P.O. #	_ t// // ///////////////////////////////
ANALYTICAL LABORATORY	OF CUSTO	PROJECT #/ PROJECT NAME	20011	5,-	h00/			P.O.#	
CLIENT:		REPORT ATTN:	aper-		8,000	w'.	ANALY	(SES BE	EQUESTED
Frielmor	e BROS	INC Seal TO Priduo.	re Office		in the second			77	7 / / /
ADDRESS: 1905/ape	TI Valles	Naina Ca 945	58			a /			TURN-AROUND TIME
BILLING ADDRESS:	apell Valley	PROJECT #/ PROJECT NAME REPORT ATTN: Second To Produce. STATE: ZIP: Napa Ca 945	17				//		☐ STANDARD ☐ RUSH
PHONE #: FAX PHON	E: 8104 SAMPLE	R (PRINT & SIGN NAME): GII Pridmore			, 4		//		DUE DATE:
CALTEST DATE TIME	CONTAINER		CLIENT	COMP.	- Jack	//	//	///	
# SAMPLED SAMPLED MATRI	X AMOUNT/TYPE PRESERVATIV		LAB#	GRAB	-	ff			REMARKS
3/15 1207	<u> </u>	Capell School Welly	teeld						
		*		1					4 2
							(.10.	1//	2,4345,00
				-			111	-3	15/12-
								/	
		,							
		*	h						
				<u> </u>	Ingitag				
By submittal of sample(s), clier	DATE,TIME	Terms and Conditions set forth on the re		IOCUMENT.		T	DATE/TII	WE .	RECEIVED BY
400 DO	2/16 4	RECEIVED BY	116-11	WOODI ILD L			DATE 111	VII	
	1190								
			<u></u>		_				
	BIOSV	VOA TEMP: 30°C SEALED:	<u>(Ŷ)_/ N</u>	INTACT:	<u>(y)</u> / N				Nondrinking Water, Digested Metals;
BC. BIOWOMET		DMMENTS VANUE OF SOMEO							s Nondrinking Water, Digested Metals; = Soil, Sludge, Solid; FP = Free Product
OC: AA SV VOA		12018 HJ 3 22-18				co	NTAINE	R TYPES:	AL = Amber Liter; AHL = 500 ml
m	/OA	<u> </u>				Amt (Pla	per; PT = stic); SJ =	Pint (Plastic Soil Jar; B4	;); QT=Quart (Plastic); HG = Half Gallon 4 = 4 oz. BACT; BT = Brass Tube; VOA =
W/HNO, H,SO, NaC									Type Container
PIL: HNO,H,SO,NaOI	IHCL								

DAVE BESS PUMP & WELL

LIC.# C-57-C-10 487027

WATER WELL TEST REPORT# W-17-039 1115 MT GEORGE AVE. NAPA, CALIF. 94558 707-226-2539 / 253-0574

LOCATION (well address):	1191 Capell Valley Rd	Napa CA	Date	05Oct2017
TEST REQUESTOR:	Gil Pridmore			

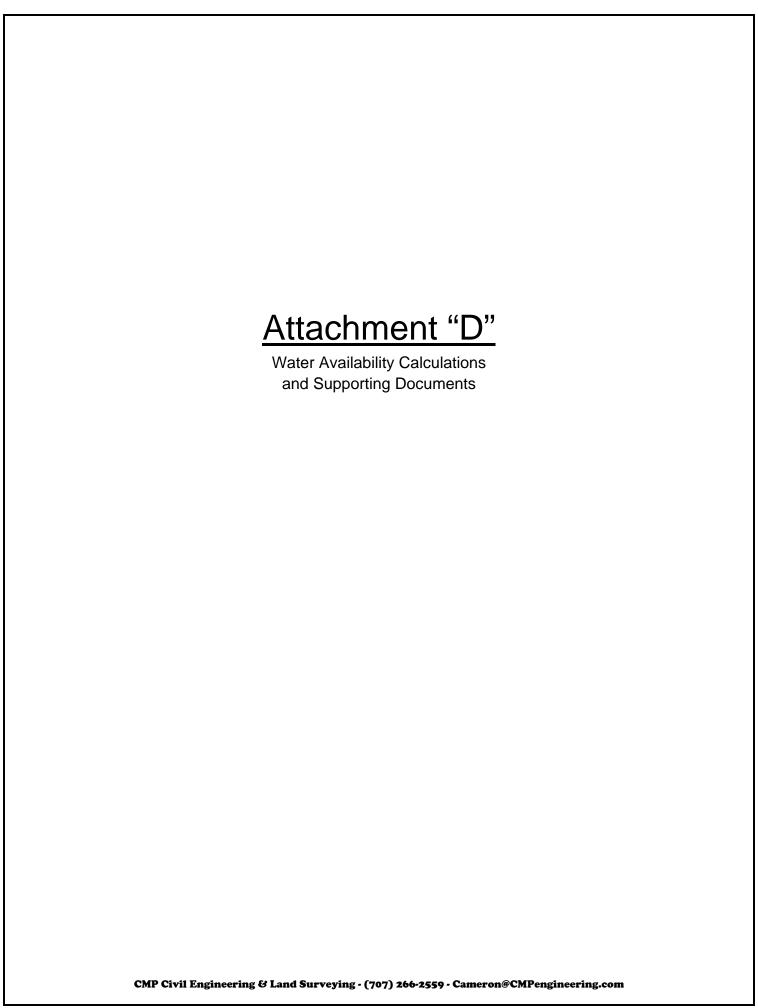
SURFACE INSPECTION

CASING DIA. 6" pvc EST, AGE OF WELL 12 Years (Per Well Log) DEPTH OF WELL 250' (Per Well Log) SANITARY SEAL (functional) PIPING SYSTEM (functional) ELECTRICAL SYSTEM (functional) PRESSURE TANKS (functional) WELL SIZE OF PUMP 2 (HP)

OPERATING VOLTS: 239 AMPS: R: 2.8 B: 9.5 Y:P 10.0

FLOW TEST DATA

METHOD OF TEST: 2 HOUR OPEN FLOW DISCHARGE TEST USING THE INSTALLED PUMP AND EXISTING EQUIPMENT. (TEST EQUIPMENT USED), 2" FLOW METER, 2" THROTTLING DISCHARGE VALVE, 0/200 PRESSURE GAGE AND A POWERS WELL DEPTH STATIC METER.


TIME	RATE (GPM)	WATER LEVEL
14:00	50	20ft
15:20	43	56ft
15:40	43	61ft
16:00	43	61ft

STATIC LEVEL PRIOR TO TEST <u>20</u> FT STATIC LEVEL @ END OF TEST <u>61</u> FT TOTAL DRAW DOWN DURING THIS TEST WAS <u>41 ft</u> (AVG.)GALLONS PER MIN. <u>44.75</u> FOR <u>2</u> HOURS OF TESTING.

GENERAL COMMENTS

Well and well equipment in working order @ time of testing. The well fills a storage tank and is pressurized from the storage tank with 2 Goulds Booster pumps One ¾ HP (HB707) and 1 1hp (HB2510). Pressure Tanks are showing signs of deterioration (Rusting) and should be replaced. It seems that all controls are low voltage. The water is treated with a Culligan system, it is unknown if its operational or being serviced. Some information was taken from the well completion report Dated 6/28/2006 Log #e039625. Pump Depth is unknown at this time. Flow Meter Installed after the Booster pumps reads 5155799 Gallons.

Disclaimer: The data and conclusions provided herein are based upon the best information available to this company using standards and accepted practices of the water well drilling industry. However, well yield conditions are subject to dramatic changes in short periods of time due to usage and recharging of aquifers, etc. Therefore, the data and conclusions taken during this test are only valid of the day of the test and should not be relied upon to predict either the future quantity or quality of the well. This company makes no warranties either expressed or implied as to future water production and expressly disclaims and excludes any liability for consequential or incidental damages arising out of the breach of any expressed or implied warranty of future water production or out of any future use reported by the customer.

CMP Civil Engineering & Land Surveying 1607 Capell Valley Road Napa, CA 94558 (707) 815-0988 Cameron@CMPEngineering.com

CMPEngineering.com

Water Availability Calculations for the Capell School Lodging Project

Located at: 1191 Capell Valley Road Napa, CA 94558

Date: 7/22/2020

Project # 00055

<u>Legend</u>
Requires Input
Automatically Calculates
Important Value Automatically Calculates
Important Value Requires Input

Hit ctrl+alt+shift+F9 when finished to recalc a

		IS- PHASE (
WATER USE CALCU	JLATIONS F		AL USE
RESIDENTIAL	#	FACTOR	AF/YR
PRIMARY RESIDENCES=	0	0.5	0.00
SECONDARY RESIDENCES=	0	0.2	0.00
FARM LBR DWELLING (# OF PPL) =	0	0.06	0.00
		SUB TOTAL=	
	DENTIAL CA	LCULATIONS	
GRICULTURAL	# ACRE	FACTOR	AF/YR
VINEYARD IRRIGATION ONLY=	0	0.3	0.00
VINEYARD HEAT PROTECTION=	0	0.25	0.00
VINEYARD FROST PROTECTION=	0	0.25	0.00
IRRIGATED PASTURE=	0	4	0.00
ORCHARDS=	0	4	0.00
LIVESTOCK (SHEEP/COWS)=	0	0.01	0.00
		SUB TOTAL=	0.00
CHOOL	# GAL	FACTOR	AF/YR
DOMESTIC WATER USE =	345379	SEE WW CALC	1.06
LANDSCAPING WATER USE =	1694310	SEE IRR. CALC	5.20
		SUB TOTAL=	6.26
NDUSTRIAL	# EMPL	FACTOR	AF/YR
FOOD PROCESSING=	0	31	0.00
PRINTING/ PUBLISHING=	0	0.6	0.00
		SUB TOTAL=	0.00
OMMERCIAL	# EMPL	FACTOR	AF/YR
OFFICE SPACE=	0	0.01	0.00
WAREHOUSE=	0	0.05	0.00
		SUB TOTAL=	0.00
EXIS	TING USE TO	OTALS	
RESIDENTIAL=	0.00	AF/YR	
AGRICULTURAL=	0.00	AF/YR	
SCHOOL=	6.26	AF/YR	
INDUSTRIAL=	0.00	AF/YR	
COMMERCIAL=	0.00	AF/YR	
OTHER USAGE (LIST BELOW)			
RECYCLED WASTE WATER =		AF/YR	
TOTAL EXISTING WATER USE=	2039688	G/YR	
TOTAL EXISTING WATER USE=	6.26	AF/YR	

WATER AVAILABILTY C	ALCULATION	IS FOR HIST	<u>ORICAL</u>
WELL NUMBER	Q - GPM	AF/YR	
1	45	72.590	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	45	72.590	
SPRING NUMBER	Q - GPM	AF/YR	
1		0.000	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	0	0.000	
TANK #	GAL	AF	
1	10000	0.031	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	10000	0.031	
RESERVOIR #	GAL	AF	
1	0		
2	0		
3	0		
4	0		
5	0		
TOTAL=	0.000	0	
GROUND WATER RECHARGE	AF/YR/ACRE	PARCEL AC	AF/YR
See Groundwater Recharge Analysis	1.54	5.08	7.82
TOTAL AVAILABLE WATER =	2549023.87	G/YR	
IOIAL AVAILABLE WATER =			
TOTAL AVAILABLE WATER =	7.82	AF/YR	
		AF/YR AF/YR	

WATER USE CALC	ULATIONS F	OR PROPOS	ED USE					
RESIDENTIAL	#	FACTOR	AF/YR					
PRIMARY RESIDENCES=		0.5	0.00					
SECONDARY RESIDENCES=		0.2	0.00					
FARM LBR DWELLING (# OF PPL) =		0.06	0.00					
(SUB TOTAL=						
NON- RESIDENTIAL CALCULATIONS								
AGRICULTURAL	# ACRE	FACTOR	AF/YR					
VINEYARD IRRIGATION ONLY=		0.3	0.00					
VINEYARD HEAT PROTECTION=		0.25	0.00					
VINEYARD FROST PROTECTION=		0.25	0.00					
IRRIGATED PASTURE=		4	0.00					
ORCHARDS=		4	0.00					
LIVESTOCK (GOATS/CHICKENS)=	0.1	0.01	0.00					
,		SUB TOTAL=	0.01					
LODGING	# GAL	FACTOR	AF/YR					
DOMESTIC WATER USE =	289988	SEE WW CALC	0.89					
LANDSCAPING WATER USE =	749406	SEE IRR. CALC	2.30					
		SUB TOTAL=	3.19					
INDUSTRIAL	# EMPL	FACTOR	AF/YR					
FOOD PROCESSING=	0	31	0.00					
PRINTING/ PUBLISHING=	0	0.6	0.00					
		SUB TOTAL=	0.00					
COMMERCIAL	# EMPL	FACTOR	AF/YR					
OFFICE SPACE=	0	0.01	0.00					
WAREHOUSE=	0	0.05	0.00					
		SUB TOTAL=	0.00					
PROPOSED USE TOTALS								
RESIDENTIAL=	0.00	AF/YR						
AGRICULTURAL=	0.01	AF/YR						
LODGING=	3.19	AF/YR						
INDUSTRIAL=	0.00	AF/YR						
COMMERCIAL=	0.00	AF/YR						
OTHER USAGE (LIST BELOW)								
RECYCLED WASTE WATER =		AF/YR						
		AF/YR						
		AF/YR						
		AF/YR						
		AF/YR						
	1042652	G/YR						
TOTAL PROPOSED WATER USE= TOTAL PROPOSED WATER USE=	3.20	AF/YR						

WATER AVAILABILTY C	ALCULATIO	NS FOR PRO	POSED
WELL NUMBER	Q - GPM	AF/YR	
1	45	72.590	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	45	72.590	
SPRING NUMBER	Q - GPM	AF/YR	
1		0.000	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	0	0.000	
TANK #	GAL	AF	
1	10000	0.031	
2		0.000	
3		0.000	
4		0.000	
5		0.000	
TOTAL=	10000	0.031	
RESERVOIR #	GAL	AF	
1	0	7 (1	
2	0		
3	0		
4	0		
5	0		
TOTAL=	0	0.000	
GROUND WATER RECHARGE	AF/YR/ACRE	PARCEL AC	AF/YR
See Groundwater Recharge Analysis	1.54	5.08	7.82
3 ,			
TOTAL WATER AVAILABLE =	2549023.87	G/YR	
TOTAL WATER AVAILABLE =	7.82	AF/YR	
TOTAL PROPOSED WATER USE=	3.20	AF/YR	
1017(211(0100221)7(12(002-	4.62	AF/YR	

CMP Civil Engineering & Land Surveying 1607 Capell Valley Road Napa, CA 94558 (707) 815-0988 Cameron@CMPEngineering.com

CMPEngineering.com

Ground Water Recharge Analysis for the Capell School Lodging Project

Located at: 1191 Capell Valley Road Napa, CA 94558

Date: 7/22/2020

Project # 00055

<u>Legend</u>
Requires Input
Automatically Calculates
Important Value Automatically Calculates
Important Value Requires Input

Hit ctrl+alt+shift+F9 when finished.

GROUND WATER RECHARGE CALCULATIONS								
PAF	RCEL VARIA	BLES						
Parcel size =	5.08	ac						
Average annual rainfall (P) =	34.00	in (from napa county RSS)						
Total parcel average rainfall volume =	14.39	ac-ft/yr						
EVADO	TRANSPIRA	ION (F)						
Surface Type	Area (ac)	E (ac-ft)						
Vineyard =	0.00	0.00						
Orchard =	0.00	0.00						
Hay =								
Other Crops =	0.72	0.00						
Impervous Surfaces onto Grassland =	0.72	0.00						
Totala	0.70	0.00						
Totals =	0.72	0.00						
Native plants area =	4.36	ac	l					
Native plants estimated coefficient =	0.35	coefficient						
Plant density =	80%	percent						
Native Plant Growth Cycle Factor =	0.70	factor						
Grass refernce ETo =	47.04	in (from Zone 8 ITRC value typ yr)						
Native plant ETc =	11.52	in						
The state of the s								
Total annual native plant E =	3.35	ac-ft						
	0.00							
Total annual E for parcel =	3.35	ac- ft						
	RUNOFF (R)							
Average runoff relief coefficient =	8%	%						
Average runoff soil coefficient =	6%	%						
Average runoff vegitation coefficient =	6%	%						
Average runoff surface coefficient =	8%	%						
Total Runoff Coefficient =	28%	%						
Average annual rainfall =	14.39	ac-ft						
Runoff producing rainfall =	80%	%						
Total Annual Runoff (R) =	3.22	ac-ft						
ANNUAL OBOUND WATE	D DECLIABO	E CTODACE	(C) D (D.E)					
ANNUAL GROUND WATE			: (5) = P-(K+E)					
Total Annaul Precipitation (P) =	14.39	ac-ft						
Total Annual Runoff (R) =	3.22	ac-ft						
Total Annual Evapotranpiration (E) =	3.35	ac-ft						
Total Annual Ground Recharge (S) =	7.82	ac-ft						
	4.5.1							
Annual Recharge Rate Per Acre =	1.54	ac-ft / yr / ac						