

Water System Permit Amendment Report

WATER SYSTEM PERMIT AMENDMENT

MEYERS WATER COMPANY

March 28, 2022

B&R PROJECT No. 4078.00

Prepared By:

Brelje & Race Consulting Engineers 475 Aviation Blvd. Suite 120, Santa Rosa, CA 95403 v. 707.576.1322 f. 707.576.0469 www.brce.com

TABLE OF CONTENTS

1.	Introduction	1
2.	Source Water Information	1
3.	Treatment and Design Information	1

APPENDICES

Appendix A - Well Drilling Log

Appendix B - Well Capacity Test Report

Appendix C - Source Water Assessment

Appendix D - Raw Water Quality Data

Appendix E - Treatment System Schematic

Appendix F - Treatment System Component Cut Sheets

1. INTRODUCTION

Meyers Water Company (CA2800530) seeks to update their existing drinking water permit for the use of a new supply well and manganese removal treatment system, and moving the treatment, storage, and distribution pumping facilities to a new site. No changes are proposed to the distribution system, nor the number or type of service connections. This Technical Report includes updated Source Water Information and Treatment and Design Information sections per the *Domestic Water Supply Permit Applicant Instructions* describing changes to the source and treatment facilities.

2. SOURCE WATER INFORMATION

The new source, Well 003, was drilled on January 7, 2021 and is located at 1794 Milton Road (APN 048-042-028) in Napa, California. The well drilling log, included in Appendix A, indicates there is a sanitary seal to a depth of approximately 195 feet below ground surface (bgs), and the well has two screened sections separated with a bentonite seal. Zone 1 extends from 210 to 230 ft bgs, and Zone 2 is from 265 to 285 ft bgs. A packer is installed in the casing between the zones to allow for water to be drawn from a single zone. The water quality from Zone 2 is better than that from Zone 1 and therefore only water from Zone 2 will be used.

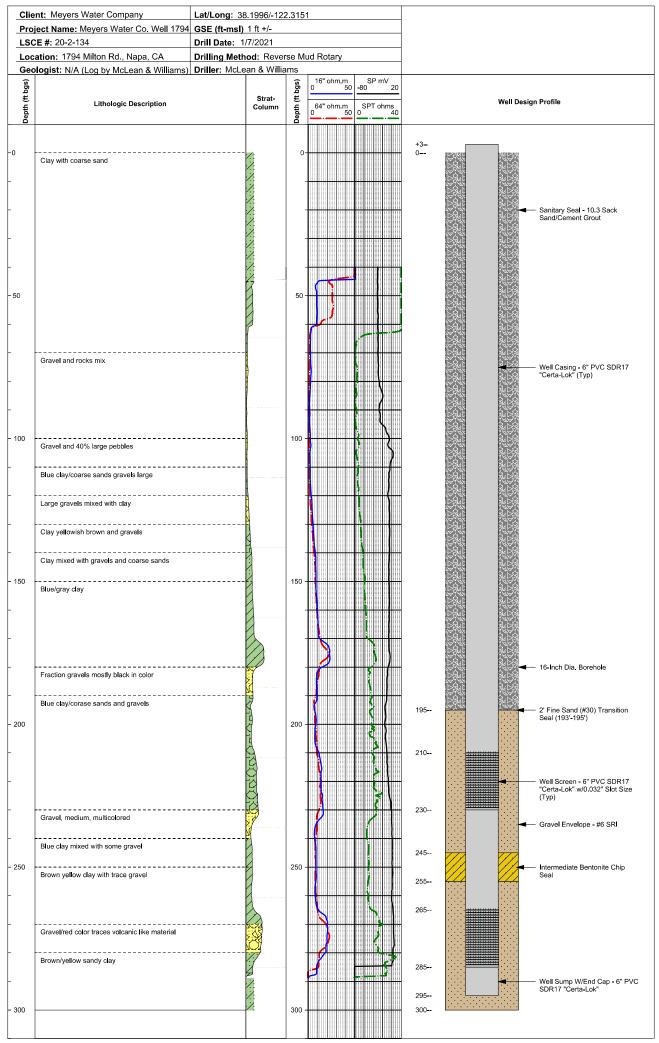
A pump capacity test in accordance with California Code of Regulations (CCR) Title 22, Section 64554(f) was performed in February 2022. The test report is included in Appendix B. The test was conducted with the packer installed and with a pump only drawing water from Zone 2. The well packer has openings for a sounding tube, well discharge piping and wiring which allowed for level measurements to be taken without the influence of the upper zone. The well was pumped continuously at 60 gpm for over 24 hours. Water levels were recorded during the test using a level transmitter installed in the sounding tube. The test log column for calculated "Draw down" indicates the change in water level since the previous reading, rather than the difference from the static water level. This column has been crossed out on the test log to reduce confusion. The total drawdown at the end of the test was approximately 43.14 feet from static. The water level recovered to within 2 feet of the static water level within 9.5 hours.

A Source Water Assessment is provided in Appendix C. The calculated radii for Zones A, B5, and B10 were less than the Table 2 radii so the Table 2 radii were used for the assessment. Two high risk, two medium risk, and two low risk potential contaminating activities are present within the protection zones. The high risk potential contaminating activities include a sewer collection system on both the commercial/industrial checklist and residential checklist.

Raw water quality data from Zone 2 is provided in Appendix D. The source water concentrations of chloride, conductivity, and total dissolved solids are above the recommended secondary maximum contaminant levels (MCLs), but below the upper secondary MCLs. Manganese concentrations are above the secondary MCL. No primary MCLs are exceeded.

3. TREATMENT AND DESIGN INFORMATION

Treatment facilities are proposed to be installed on the same parcel as Well 003 at 1794 Milton Road. Treatment facilities include disinfection, and oxidation and filtration for manganese removal. A system schematic is provided in Appendix E. Cut sheets for system components are included in Appendix F.


Raw water from the well is pumped through a meter to sodium hypochlorite and potassium permanganate injection points, with doses provided in proportion to the metered flow rate. Two hydropneumatic tanks prevent pressure surges from the well pump. The flow is split to two greensand filters in parallel configuration, following which filter effluent is stored in six 5,000 gallon tanks before entering the distribution system. The filters are backwashed using water from the distribution system. Backwash and rinse water are directed to a 2,500 gallon cone-bottom decant tank. A backwash recycle pump recycles supernatant back to the treatment system upstream of chemical injection.

The well pump operates at approximately 30 gpm. Disinfection is achieved by injecting 12.5% sodium hypochlorite to achieve an initial concentration of approximately 1.8 mg/L. Residual chlorine concentration after storage and prior to entering the distribution system is approximately 1.1 mg/L. Potassium permanganate solution is injected to achieve an initial concentration of approximately 1.5 mg/L. Bench testing was performed to identify the appropriate dose of potassium permanganate that will result in no residual following filtration.

The flow rate through each filter is approximately 15 gpm. The filter vessels are 24" diameter by 72" tall and contain GreensandPlus media manufactured by Inversand Company. The service flow rate is approximately 4.8 gpm/SF. The recommended flow rate from the media manufacturer is 2-12 gpm/SF. The recommended backwash flow rate is 12 gpm/SF to achieve 40% bed expansion, however, backwash flow is not metered. The backwash flow rate was calculated to be 10 gpm/SF, resulting in 35% bed expansion, by measuring the change in tank level over a specific backwash duration. To achieve 12 gpm/SF, a backwash supply pump would be needed. The manufacturer's recommendation for backwash frequency is calculated from the contaminant loading and service rate. For this system, the filters should be backwashed every 32 hours of operation. The filters are currently backwashed every 24 hours, regardless of operation time. Therefore, the slightly lower than recommended bed expansion is likely acceptable due to the higher frequency of backwashing.

Supernatant from the backwash decant tank is recycled to the treatment system upstream of chemical injection. The backwash recycle pump is controlled to run whenever the well pump is running. The decant tank is equipped with a floating outlet which allows water to be drawn from approximately 1 foot below the water surface. Backwash return is not metered, but the pump operates at less than 3 gpm ensuring the backwash recycle rate is less than 10% of the total treatment flow.

Appendix A - Well Drilling Log

Appendix B - Well Capacity Test Report

WELL INSPECTION REPORT FOR

Attn: Edgerly Island Living Water Date of test: February 10th – 12th, 2022

Upon your request, we have checked the well and/or pressure system at

1794 Milton Rd. Napa, Ca 94558

Our findings are as follows:

WELL INFORMATION

Casing Size: 6" PVC

Static Water Level: 1.48' from top of casing

Well Depth: 295' draw down during test: 44.62' from top of casing

Total water draw down in feet from static water level at end of flow test: 43.14'

How tested: Open discharge with existing pumping equipment.

Well yield after test: 60 GPM after 30 hours of continuous pumping

Well Comments: Well was constructed January 2021 and was estimated at 100 GPM plus

WELL EQUIPMENT INFORMATION

Pump Make: Grundfos HP 5 Pump Setting: 260'

Type: Submersible Voltage: 230 Pipe Size: 1-1/2" sch.120 PVC

Pump Model: 62S50-12 **Phase:** 3 **Wire Size:** #12-3/wg submersible flat jacket

Pressure tank: None

Comments:

1794 Milton Rd.

WELL TEST INFORMATION

Well Test

Hours	Time	Water level	Draw down	GPM	Comments
0	11:03	1.48'	0	60	Clear watercolor
1/2	11:33	13.60'	12.12'	60	
1	12:03	15.91'	2.31'	60	
1 1/2	12:33	21.28'	5.37'	60	
2	13:03	11.16'	-10.12'		Pump stopped
2 1/2	13:33	21.32'	10.16'	60	Clear watercolor
3	14:03	25.44'	4.12'	60	
3 1/2	14:33	27.86'	2.42'	60	
4	15:03	29.92'	2.06'	60	
4 1/2	15:33	31.67'	1.75'	60	
5	16:03	32.81'	1.14	60	
5 1/2	16:33	34.12'	1.31	60	
6	17:03	35.07'	.95'	60	
6 1/2	17:33	36.10'	1.03'	60	
7	18:03	36.79'	.69'	60	
7 1/2	18:33	37.19'	. <mark>4φ</mark> '	60	
8	19:03	37.73'	.54'	60	
8 1/2	19:33	38.02'	.2 <mark>9</mark> '	60	
9	20:03	38.39'	.37'	60	
9 1/2	20:33	39.03'	.64'	60	
10	21:03	39.26'	23'	60	
10 1/2	21:33	39.55'	.29'	60	
11	22:03	39.76'	.21	60	
11 1/2	22:33	40.01'	.25'	60	
12	23:03	40.38'	.37'	60	
12 1/2	23:03	40.48'	.10'	60	
13	23:33	40.65'	.17'	60	
13 1/2	24:03	40.78'	.13'	60	
14	24:33	41.09'	.31'	60	
14 1/2	01:03	40.78'	31'	60	
15	01:33	41.42'	.64'	60	
15 1/2	02:03	41.67'	.25'	60	
16	02:33	42.03'	.36'	60	
16 1/2	03:03	42.24'	.21'	60	
17	03:33	42.37'	.13'	60	
17 1/2	04:03	42.66'	.29'	60	
18	04:33	42.84'	.18'	60	

18 1/2	05:03	42.90'	.06'	60	
19	05:33	43.06'	.16'	60	
19 1/2	06:03	43.14'	.08'	60	
20	06:33	43.16'	.02'	60	
21 1/2	07:03	43.14'	02	60	
22	07:33	43.16'	.02'	60	
22 1/2	08:03	43.16'	.00	60	
23	08:33	43.35'	.19'	60	
23 1/2	09:03	43.06'	29	60	
24	09:33	43.09'	.03'	60	
24 1/2	10:03	42.98'	11	60	
25	10:33	43.16'	.18'	60	
25 1/2	11:03	43.19'	.03'	60	
26	11:33	43.06'	13'	60	
26 1/2	12:03	43.37'	.31	60	
27	12:33	43.38'	.01'	60	
27 1/2	13:03	43.67'	.29'	60	
28	13:33	43.70'	03'	60	
28 1/2	14:03	43.94'	.24	60	
29	14:33	43.17'	77"	60	
29 1/2	15:03	44.23'	1.06'	60	
30	15:33	44.62'	.39	60	
RECOVERY	Time	W/Level	Recovery	Flow/Rate	
RECOVERY 0	Time 15:33	W/Level 44.62'	Recovery 0	Flow/Rate 0	Start recovery
			- 1		Start recovery
0	15:33	44.62'	0	0	Start recovery
0 1/4	15:33 15:48	44.62' 35.25'	0 9.37'	0	Start recovery
0 1/4 1/2	15:33 15:48 16:03	44.62' 35.25' 31.84'	0 9.37' 3.41'	0 0 0	Start recovery
0 1/4 1/2 3/4	15:33 15:48 16:03 16:18	44.62' 35.25' 31.84' 29.21'	0 9 3 7' 3 4 1' 2 .63'	0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4	15:33 15:48 16:03 16:18 16:33	44.62' 35.25' 31.84' 29.21' 27.11'	0 9 3 7' 3.41' 2.63' 2.10	0 0 0 0	Start recovery
0 1/4 1/2 3/4	15:33 15:48 16:03 16:18 16:33 16:48 17:03	44.62' 35.25' 31.84' 29.21' 27.11' 25.36'	0 9,37' 3,41' 2,63' 2,10 1,75'	0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54'	0 9 37' 3.41' 2.63' 2.10 1.75' 1.52' 1.30'	0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32'	0 9 3 7' 3 .4 1' 2 .63' 2 .10 1 .75' 1 .52' 1 .30' 1 .22'	0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25'	0 9 37' 3.41' 2.63' 2.10 1.75' 1.52' 1.30' 1.22' 2.07'	0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48'	0 9,37' 3,41' 2,63' 2,10 1,75' 1,52' 1,30' 1,22' 2,07' 1,77'	0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99'	0 9,37' 3,41' 2,63' 2,10 1,75' 1,52' 1,30' 1,22' 2,07' 1,77' 1,49'	0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67'	0 9 37' 3.41' 2.63' 2.10 1.75' 1.52' 1.30' 1.22' 2.07' 1.77' 1.49' 1.32'	0 0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 4 1/2	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18 18:33	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67' 13.58'	0 9 37' 3.41' 2.63' 2.10 1.75' 1.52' 1.30' 1.22' 2.07' 1.77' 1.49' 1.32' 1.09'	0 0 0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 1/2 5	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18 18:33 18:48	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67' 13.58' 12.22'	0 9 37' 3 41' 2 .63' 2 .10 1 .75' 1 .52' 1 .30' 1 .22' 2 .07' 1 .77' 1 .49' 1 .32' 1 .09' 1 .36'	0 0 0 0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 4 1/2 5 5 1/2	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18 18:33 18:48 19:03	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67' 13.58' 12.22' 10.74'	0 9 37' 3.41' 2.63' 2.10 1.75' 1.52' 1.30' 1.22' 2.07' 1.77' 1.49' 1.32' 1.09' 1.36' 1.48'	0 0 0 0 0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 1/2 5 5 1/2 6	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18 18:33 18:48 19:03 19:33 20:03	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67' 13.58' 12.22' 10.74' 9.61'	0 9 37' 3 .41' 2 .63' 2 .10 1 .75' 1 .52' 1 .30' 1 .22' 2 .07' 1 .77' 1 .49' 1 .32' 1 .09' 1 .36' 1 .48' 1 .13'	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 4 1/2 5 5 1/2 6 6 1/2	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18 18:33 18:48 19:03 19:33 20:03	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67' 13.58' 12.22' 10.74' 9.61' 8.49'	0 9 3 7 3 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start recovery
0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/2 3 3 1/2 4 1/2 5 5 1/2 6	15:33 15:48 16:03 16:18 16:33 16:48 17:03 17:18 17:33 17:48 18:03 18:18 18:33 18:48 19:03 19:33 20:03	44.62' 35.25' 31.84' 29.21' 27.11' 25.36' 23.84' 22.54' 21.32' 19.25' 17.48' 15.99' 14.67' 13.58' 12.22' 10.74' 9.61'	0 9 37' 3 .41' 2 .63' 2 .10 1 .75' 1 .52' 1 .30' 1 .22' 2 .07' 1 .77' 1 .49' 1 .32' 1 .09' 1 .36' 1 .48' 1 .13'	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start recovery

8	22:03	5.51'	.97'	0	
8 1/2	22:33	4.62	.89'	0	
9	24:03	3.84'	.78'	0	
9 1/2	24:33	3.12'	.72'	0	
10	01:03	2.49'	.63'	0	
10 1/2	01:33	2.09'	.40'	0	
11	02:03	1.96'	.13'	0	
11 1/2	02:33	1.89'	.07'	0	
12	03:03	1.81'	.08'	0	
12 1/2	03:33	1.75'	.06'	0	
13	04:03	1.68'	.07'	0	
13 ½	04:33	1.63'	.05	0	
14	05:03	1.59'	.04'	0	
14 ½	05:33	1.56'	\0 3 '	0	
15	06:03	1.55'	.0/1'	0	
15 ½	06:33	1.54'	.01'	0	
16	07:03	1.53'	. <mark>0</mark> 1'	0	
16 ½	07:33	1.53'	, <mark>o</mark> o'	0	
17	08:03	1.52'	.01'	0	
17 1/2	08:33	1.52'	.00	0	
18	09:03	1.52'	.00'	0	
18 ½	09:33	1.51'	.01'	0	
19	10:03	1.51'	.00'	0	
19 ½	10:33	1.51'	.00'	0	
20	11:03	1.50'	.01'	0	
20 ½	11:33	1.50'	.00'	0	
21	12:03	1.50'	.00'	0	
21 ½	12:33	1.50'	.00'	0	
22	13:03	1.50'	.00'	0	
22 ½	13:33	1.50'	.00'	0	End Recovery
			<u> </u>		

NOTE: Need to meet 95% recovery by hour 8

Summary:

1. Static Water level at beginning of test: 1.48' from top of well casing.

2. Static Water recovery at end of recovery: 1.50' from top of well casing

3. Recovery to: <u>1.50'</u>, within 22 1/2 hours (Recovery time)

Draw-down in feet: 43.14'

4. Well capacity (GPM)
5. Specific Capacity Well Yield GPM/ft of drawdown:
60 GPM
1.39 GPM/ft

1794 Milton Rd.

WATER SAMPLES

** No water samples drawn at time of testing**

FINAL COMMENTS

<u>Please note that flow test results by McLean and Williams Inc. represents the well water</u> yield and system condition for the time of the test only.

Gonzalo Salinas Mclean & Williams Inc. gonzalo@mcleanandwillimas.com

Thank you, *Gonzalo Galinas*

Appendix C - Source Water Assessment

Drinking Water Source Assessment Well Source

Public water system:	Meyers Water Company		ID No.:	2800530
Name of source:	Well 003	_ID No.:		
Assessment date:	3/25/22 Assessment conducted by_	Brelje & Race	Consulting E	ngineers
Water System Contact 1	Name: Juell Fullner	Phone #	: 707-9	74-3803
Water System Contact	Address: 1830 Milton Rd. Napa	, CA 94559		
The following informat	ion should be contained in the drinking	water source assess	sment submitt	al.
X Delineation of §	groundwater protection zones			
X Well Data Shee	et			
X Possible Contai	minating Activities (PCA) inventory for	m		
X Assessment ma	p with source location and protection zo	ne		
	es (optional) (e.g. local maps of zones and stion of ground water flow)	d PCAs, recharge	area maps, or	maps
Means of Publi	c Availability of Report (indicate those	that will be used)		
Copy ii Copy ii Copy ii	in the Consumer Confidence Report* (no regulatory agency (CDPH or LPA) off to public water system office (recomment public library/libraries to (indicate Internet address:	ice (minimum) ded)	_)	

^{*}The CCR should indicate where customers can review the assessments.

Delineation of Ground Water Protection Zones

Procedures

Three zones are delineated around a well (see specific guidance for springs and horizontal wells), using the Calculated Fixed Radius method. The default shape of these zones is circular and the radius of the zones is based on the Time of Travel (TOT) of water from a point in the aquifer to the well. The three zones are defined as:

Zone A (2 year TOT) Zone B5 (5 year TOT) Zone B10 (10 year TOT)

For porous media aquifers (consisting primarily of rocks, sands, gravels and clays), the radius also considers the pumping rate of the well (Q in gallons per minute), the screened interval of the well (H in feet), and the effective porosity of the aquifer (η - assumed to be 0.2). For fractured rock aquifers, the procedures are the same, but the radius of the zones is increased by 50%.

There are more complicated methods for determining the size, shape and location of zones. Water systems interested in these methods should consult with a hydrogeologist or other knowledgeable professional.

The following table has been developed to assist water systems and regulators in determining the procedures to use in delineating protection zones.

TABLE 1

Aquifer	Type of System	Pumping	Radius	Radius	Radius
Media		Rate	Zone A	Zone B5	Zone B10
		(Q gpm)	(R ₂ feet)	(R ₅ feet)	(R ₁₀ feet)
Porous Med	ia		600'min.	1,000'min.	1,500'min.
	Transient Noncommunity	Any	600'		
	Non-Transient Noncommunity	0 to 100 gpm	Calcula	ate or Refer to	Table 2
	Non-Transient Noncommunity	> 100 gpm		Calculate	
	Community	0 to 100 gpm	Calcula	ate or Refer to	Table 2
	Community	> 100 gpm		Calculate	
Fractured Ro	ock		900'min.	1,500'min.	2,250 min.
	Transient Noncommunity	Any	900'		
	Non-Transient Noncommunity	0 to 100 gpm	Calculate or Refer to Table 3		Table 3
	Non-Transient Noncommunity	> 100 gpm	Calculate		
	Community	0 to 100 gpm	Calculate or Refer to Table 3		Table 3
	Community	> 100 gpm	(Contact CDPH	*

Delineation of Ground Water Protection Zones

Public water system:	Meyers Water Compar	<u>ıy</u> ID No.:	2800530
Name of source:	Well 003	ID No.:	
Delineation date:	6/14/21 Delineation conduct	ed by: <u>Brelje & Rac</u>	e Consulting Engineers
Equation			
Porous Media Aquife	rs Fractu	red Rock Aquifers	
	$R_T = \sqrt{\frac{QT}{\pi \eta H}}$	R_T	$=1.5\times\sqrt{\frac{QT}{\pi\eta H}}$
` '	of zone for Time of Travel <i>T</i> years) (2, 5, or 10 years) y of well (in ft3/year)		ive porosity (default = 0.2) interval (in feet) (10' min.)

Calculations

Aquifer Material (select one) <u>x</u> Porous Media _____Fractured Rock

Pumping Rate $Q = \underline{26}$ gpm (if unknown use Table 2 or Table 3)

Screened Interval H = 20 feet (if unknown assume 10%Q or use Table 2 or Table 3)

Porous Media Aquifer

 $(ft3/year = gpm \ x \ 70,267)$

Zone	TOT	Equation	Use one or the other		Minimum	Value
	(years)		Calculated	Table 2		(use larger)
			Radius	Radius		
A	2	$473\sqrt{Q_{gpm}/H_{ft}}$	539	819	600	819
B5	5	$748\sqrt{Q_{gpm}/H_{ft}}$	853	1,295	1,000	1,295
B10	10	$1058\sqrt{Q_{gpm}/H_{ft}}$	1,206	1,832	1,500	1,832

Fractured Rock Aquifer (Increase size of zones by 50%)

Zone	TOT	Equation	Use one or the other		Minimum	Value
	(years)		Calculated Radius	Table 3 Radius		
A	2	$709\sqrt{Q_{gpm}/H_{ft}}$			900	
B5	5	$1122\sqrt{Q_{gpm}/H_{ft}}$			1,500	
B10	10	$1586\sqrt{Q_{gpm}/H_{ft}}$			2,250	

DEFAULT PROTECTION ZONES

POROUS MEDIA AQUIFERS TABLE 2

Q	H (feet) (default minimum)	Radius Zone A (feet)	Radius Zone B5 (feet)	Radius Zone B10 (feet)
< 10 gpm	10	600	1,000	1,500
10 to 20 gpm	10	669	1,056	1,500
21 to 30 gpm	10	819	1,295	1,832
31 to 40 gpm	10	946	1,496	2,115
41 to 50 gpm	10	1,058	1,672	2,365
51 to 60 gpm	10	1,158	1,832	2,590
61 to 70 gpm	10	1,251	1,978	2,798
71 to 80 gpm	10	1,338	2,115	2,991
81 to 90 gpm	10	1,419	2,243	3,173
91 to 100 gpm	10	1,496	2,365	3,344

FRACTURED ROCK AQUIFERS TABLE 3

Q	H (feet) (default minimum)	Radius Zone A (feet)	Radius Zone B5 (feet)	Radius Zone B10 (feet)
< 10 gpm	10	900	1,500	2,250
10 to 20 gpm	10	1,003	1,587	2,250
21 to 30 gpm	10	1,228	1,943	2,747
31 to 40 gpm	10	1,418	2,244	3,172
41 to 50 gpm	10	1,585	2,509	3,546
51 to 60 gpm	10	1,737	2,748	3,885
61 to 70 gpm	10	1,876	2,968	4,196
71 to 80 gpm	10	2,005	3,173	4,486
81 to 90 gpm	10	2,127	3,366	4,758
91 to 100 gpm	10	2,242	3,548	5,015

WELL DATA SHEET Sheet 1 of 3

Complete as much information as possible. Leave blank if information is not available, use N.A. if not applicable. * Indicates items required for Source Water Assessment ** Indicates additional items required for assessments and Ground Water Rule (separate multiple entries in Actual, Estimated or Default? field with semi-colon) **DATA SHEET GENERAL INFORMATION** System Name Meyers Water Company System Number 2800530 Source of Information (well log, CDPH/County files, system, etc) Well log Organization Collecting Information (CDPH, County, System, other) Date Information Collected/Updated **WELL IDENTIFICATION** Well Number or Name Well 003 CDPH Source Identification Number (FRDS ID No.) DWR Well Log on File? ("YES" or "NO") State Well Number (from DWR) Well Status (Active, Standby, Inactive) Active **WELL LOCATION** Latitude 38.1996 Longitude -122.3151 Ground Surface Elevation (ft above Mean Sea Level) 1 Street Address 1794 Milton Road Nearest Cross Street Las Amigas Road City Napa County Napa Neighborhood/Surrounding Area (see Note 1) Re Site plan on file? ("YES" or "NO") NO DWR Ground Water Basin 2-002 DWR Ground Water Sub-basin 2-002.03 **SANITARY CONDITIONS** ** Distance to closest Sewer Line, Sewage Disposal, Septic Tank (ft) 60± to sewer line xxx± Unused State-owned Distance to Active Wells (ft) 570± MWC standby well Distance to Abandoned Wells (ft) Distance to Surface Water (ft) 110± * Size of controlled area around well (square feet) 5.000 Type of access control to well site (fencing, building, etc) fencing Surface Seal? (Concrete slab)("YES", "NO" or "UNKNOWN") YES Dimensions of concrete slab: Length(ft)/ Width(ft)/ Thick(in) 2'x2' Within 100 year flood plain? ("YES", "NO" or "UNKNOWN") YES Drainage away from well? ("YES" or "NO") YES **ENCLOSURE/HOUSING** Enclosure Type (building, vault, none, etc.) none Floor material Located in Pit? ("YES" or "NO") NO Pit depth (feet) (if applicable)

WELL DATA SHEET Sheet 2 of 3

WELL DATA SHEET SI	TIGEL 2 OI 3	
WELL CONSTRUCTION	(separate multiple entries in field with semi-colon)	Actual, Estimated or Default?
Date drilled	1/7/2021	
Drilling Method	Reverse Mud Rotary	
Depth of Bore Hole (feet below ground surface)	300	
Casing Beginning Depth/Ending Depth(ft below surface); 2nd Casing Beginning Depth/Ending Depth; 3rd Casing, etc.	Begin 3' above gs End 295' bgs	
Casing Diameter (inches); 2nd Casing Diameter; 3rd Casing, etc.	6	
Casing Material; 2nd Casing Material; 3rd Casing, etc.	PVC SDR 17	
Conductor casing used? ("YES", "NO" or "UNKNOWN") (See Note 2)	NO	
Conductor casing removed? ("YES", "NO" or "UNKNOWN")		
* Depth to highest perforations/screens (ft below surface) (or "UNKNOWN")	210	
Screened Interval Beginning Depth/Ending Depth (ft below surface); 2nd Screened Interval Beg. Depth/Ending Depth; 3rd Screened Interval, etc.	Zone 1: 210-230 Zone 2: 265-285	
* Total length of screened interval (ft)		
(default = 10% pump capacity in gpm) (or "UNKNOWN")	20	
* Annular Seal?("YES", "NO" or "UNKNOWN") (See Note 3)	YES	
* Depth of Annular Seal (ft)	195	
Material of Annular Seal (cement grout, bentonite, etc.)	Cement grout	
Gravel pack, Depth to top (ft below ground surface)	195 -245; 255-300	
Total length of gravel pack (ft)	95	
AQUIFER		
* Aquifer Materials		
(list all that apply: sand, silt, clay, gravel, rock, fractured rock)	Sand, gravel, clay	
* Effective porosity (decimal percent) <i>(default = 0.2)</i> (or "UNKNOWN")	0.2	
* Confining layer (Impervious Strata) above aquifer? ("YES", "NO" or "UNKNOWN")	YES	
Thickness of confining layer, if known (ft)	30	
Depth to confining layer, if known (ft below ground)	150	
* Static water level (ft below ground surface)	1.48' from top of casing	Artesian aquifer
Static water level measurement: Date/Method	2/10/22, level transmitter	
Pumping water level (ft below ground surface)	44.62' from top of casing	
Pumping water level measurement: Date/Method	2/11/22, level transmitter	
WELL PRODUCTION		
Well Yield (gpm)	60	
Well Yield Based On (i.e., pump test, etc.)	Pump test	
Date measured	2/11/22	
Is the well metered? ("YES" or "NO")	YES	
Production (gallons per year)	7 Million	
Frequency of Use (hours/year)	4,500	
Typical pumping duration (hours/day)	12	
PUMP	14	<u> </u>
Make	Grundfos	
Type	62S50-12	
Size (hp)	5 HP	
OIZO (IIP)	JIIF	l

WELL DATA SHEET Sheet 3 of 3

PUMP (continued)		
* Capacity (gpm)	30	
Depth to suction intake (ft below ground surface)		
Lubrication Type		
Type of Power: (i.e., electric, diesel, etc.)	electric	
Auxiliary power available? ("YES" or "NO")	NO	
Operation controlled by: (i.e., level in tank, pressure, etc.)	pressure	
Pump to Waste capability? ("YES" or "NO")	NO	
Discharges to: (i.e., distribution system, storage, etc.)	Treatment	

REMARKS AND DEFECTS (use additional sheets as necessary)

NOTES

- Neighborhood/Surrounding Area (list all that apply): A= Agricultural, Ru = Rural, Re = Residential, Co = Commercial, I = Industrial, Mu = Municipal, P = Pristine, O = Other
- Conductor Casing Oversized casing used to stabilize bore hole during well construction. Should be removed during installation of annular seal.
- 3. Annular Seal Seal of grout in the space between the well casing and the wall of the drilled hole. Sometimes called "sanitary seal".

Please Note:

The information on this Well Data Sheet is considered confidential. To allow the information to be included

in the permit report, or made available subject to a public information act request, the waiver clause below has

to be signed and dated by the owner (public water system). In lieu of this signature, the WDS has to be

retained in a confidential file, or the information shown in the shaded rows has to be "blacked out."

I/We,(Name) Matt Fullnes, Edgatly Island Living Water LLC. certify that I/We am/are the present owners of the well described on this well data sheet. I/We have reviewed the information presented on this well data sheet and I/We take no exception to having the information included in the Department of Public Health' Engineering Report. I/We understand that by including the well data sheet in the Engineering Report, it will be part of a public document that can be reviewed and copied subject to the public information act request.

3-28-22

(Signature)

(Date)

Possible Contaminating Activities (PCA) Inventory Form

Ground Water Source

Public water system name:	Meyers Water Company	ID No2	<u>800530</u> _
Name of drinking water source:_	Well 003	ID No	
Inventory date: 3/25/22	Inventory conduc	eted by <u>: Brelje & Ra</u>	ce Consulting Engineers
Indicate PCAs pertinent to the dr as applicable:	rinking water source protect	ion zones, from the	following tables,
Commercial/Indu	strial		
Residential/Munic	cipal		
Agricultural/Rura	1		
Other (required fo	or all)		

Proceed to appropriate checklist or checklists. Indicate whether the PCA is located in the zone by placing a Y (yes), N (no), or U (unknown) in the appropriate boxes. Example:

Zone A	Zone	Zone
	B5	B10
Y	N	N
N	Y	U
U	N	N

Risk Ranking of PCAs, where VH = Very High Risk, H = High Risk, M = Moderate Risk, L = Low Risk

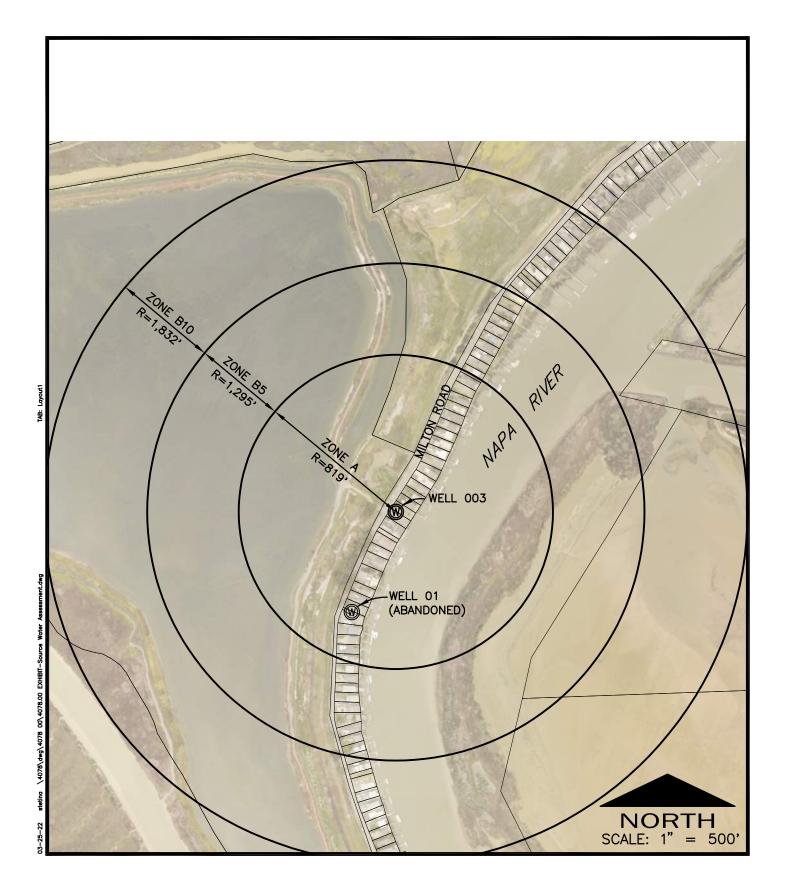
PCA Checklist COMMERCIAL/INDUSTRIAL

PCA (Risk Ranking)	PCA in	PCA in	PCA in	Comments
8	Zone A?	Zone B5?	Zone B10?	
Automobile- Body shops (H)	N	N	N	
Automobile- Car washes (M)	N	N	N	
Automobile- Gas stations (VH)	N	N	N	
Automobile- Repair shops (H)	N	N	N	
Boat services/repair/ refinishing (H)	N	N	N	
Chemical/petroleum pipelines (H)	N	N	N	
Chemical/petroleum processing/storage (VH)	N	N	N	
Dry cleaners (VH)	N	N	N	
Electrical/electronic manufacturing (H)	N	N	N	
Fleet/truck/bus terminals (H)	N	N	N	
Furniture repair/ manufacturing (H)	N	N	N	
Home manufacturing (H)	N	N	N	
Junk/scrap/salvage yards (H)	N	N	N	
Machine shops (H)	N	N	N	
Metal plating/ finishing/fabricating (VH)	N	N	N	
Photo processing/printing (H)	N	N	N	
Plastics/synthetics producers (VH)	N	N	N	
Research laboratories (H)	N	N	N	
Wood preserving/treating (H)	N	N	N	
Wood/pulp/paper processing and mills (H)	N	N	N	
Lumber processing and manufacturing (H)	N	N	N	
Sewer collection systems (H, if in Zone A, otherwise L)	Y	Y	Y	Н
Parking lots/malls (>50 spaces) (M)	N	N	N	
Cement/concrete plants (M)	N	N	N	
Food processing (M)	N	N	N	
Funeral services/graveyards (M)	N	N	N	
Hardware/lumber/parts stores (M)	N	N	N	
Appliance/Electronic Repair (L)	N	N	N	
Office buildings/complexes (L)	N	N	N	
Rental Yards (L)	N	N	N	
RV/mini storage (L)	N	N	N	

PCA Checklist RESIDENTIAL/MUNICIPAL

PCA (Risk Ranking)	PCA in Zone A?	PCA in Zone B5?	PCA in Zone B10?	Comments
Airports - Maintenance/ fueling areas (VH)	N	N	N	
Landfills/dumps (VH)	N	N	N	
Railroad yards/ maintenance/ fueling areas (H)	N	N	N	
Septic systems - high density (>1/acre) (VH if in Zone A, otherwise M)	N	N	N	
Sewer collection systems (H, if in Zone A, otherwise L)	Y	Y	Y	Н
Utility stations - maintenance areas (H)	N	N	N	
Wastewater treatment plants (VH in Zone A, otherwise H)	N	N	N	
Drinking water treatment plants (M)	Y	N	N	M
Golf courses (M)	N	N	N	
Housing - high density (>1 house/0.5 acres) (M)	Y	Y	Y	M
Motor pools (M)	N	N	N	
Parks (M)	N	N	N	
Waste transfer/recycling stations (M)	N	N	N	
Apartments and condominiums (L)	N	N	N	
Campgrounds/ Recreational areas (L)	N	N	N	
Fire stations (L)	N	N	N	
RV Parks (L)	N	N	N	
Schools (L)	N	N	N	
Hotels, Motels (L)	N	N	N	

PCA Checklist AGRICULTURAL/RURAL


PCA (Risk Ranking)	PCA in	PCA in	PCA in	Comments
	Zone A?	Zone B5?	Zone B10?	
Grazing (> 5 large animals or equivalent per acre) (H in Zone A, otherwise M)	N	N	N	
Concentrated Animal Feeding Operations (CAFOs) as defined in federal regulation1 (VH in Zone A, otherwise H)	N	N	N	
Animal Feeding Operations as defined in federal regulation2 (VH in Zone A, otherwise H)	N	N	N	
Other Animal operations (H in Zone A, otherwise M)	N	N	N	
Farm chemical distributor/ application service (H)	N	N	N	
Farm machinery repair (H)	N	N	N	
Septic systems - low density (<1/acre) (H in Zone A, otherwise L)	N	N	N	
Lagoons / liquid wastes (H)	N	N	N	
Machine shops (H)	N	N	N	
Pesticide/fertilizer/ petroleum storage & transfer areas (H)	N	N	N	
Agricultural Drainage (H in Zone A, otherwise M)	N	N	N	
Wells - Agricultural/ Irrigation (H)	N	N	N	
Managed Forests (M)	N	N	N	
Crops, irrigated (Berries, hops, mint, orchards, sod, greenhouses, vineyards, nurseries, vegetable) (M)	N	N	N	
Fertilizer, Pesticide/ Herbicide Application (M)	N	N	N	
Sewage sludge/biosolids application (M)	N	N	N	
Crops, nonirrigated (e.g., Christmas trees, grains, grass seeds, hay, pasture) (L) (includes drip-irrigated crops)	N	N	N	
<u> </u>				

PCA Checklist OTHER ACTIVITIES

TCA CHECKIST OTHER ACTIVITIES								
PCA (Risk Ranking)	PCA in	PCA in	PCA in	Comments				
	Zone A?	Zone B5?	Zone B10?					
NPDES/WDR permitted discharges (H)	U	U	U					
Underground Injection of	N	N	N					
Commercial/Industrial Discharges (VH)								
Historic gas stations (VH)	U	U	U					
Historic waste dumps/ landfills (VH)	U	U	U					
Illegal activities/ unauthorized dumping (H)	U	U	U					
Injection wells/ dry wells/ sumps (VH)	U	U	U					
Known Contaminant Plumes (VH)	U	U	U					
Military installations (VH)	U	U	U					
Mining operations - Historic (VH)	U	U	U					
Mining operations - Active (VH)	N	N	N					
Mining - Sand/Gravel (H)	N	N	N					
Wells - Oil, Gas, Geothermal (H)	N	N	N					
Salt Water Intrusion (H)	U	U	U					
Recreational area - surface water source	U	U	U					
(H)	U	U						
Underground storage tanks - Confirmed	U	U	U					
leaking tanks (VH)								
Underground storage tanks -	U	U	U					
Decommissioned - inactive tanks (L)								
Underground storage tanks - Non-	U	U	U					
regulated tanks (tanks smaller than								
regulatory limit) (H)								
Underground storage tanks - Not yet	U	U	U					
upgraded or registered tanks (H)								
Underground storage tanks - Upgraded	U	U	U					
and/or registered - active tanks (L)								
Above ground storage tanks (M)	N	N	N					
Wells - Water supply (M)	N	N	N					
Construction/demolition staging areas (M)	N	N	N					
Contractor or government agency	N	N	N					
equipment storage yards (M)								
Dredging (M)	U	U	U					
Transportation corridors - Freeways/state	N	N	N					
highways (M)								
Transportation corridors - Railroads (M)	N	N	N					
Transportation corridors - Historic railroad	U	U	U					
right-of-ways (M)	_		_					
Transportation corridors - Road Right-of-	U	U	U					
ways (herbicide use areas) (M)	**	T 7	***	-				
Transportation corridors - Roads/ Streets	Y	Y	Y	L				
(L)	ът	76. T	™ T					
Hospitals (M)	N	N	N					
Storm Drain Discharge Points (M)	U	U	U					
Storm Water Detention Facilities (M)	U	U	U					

PCA Checklist OTHER ACTIVITIES (continued)

PCA (Risk Ranking)	PCA in Zone A?	PCA in Zone B5?	PCA in Zone B10?	Comments
Artificial Recharge Projects - Injection wells (potable water) (L)	N	N	N	
Artificial Recharge Projects - Injection wells (non-potable water) (M)	N	N	N	
Artificial Recharge Projects - Spreading Basins (potable water) (L)	N	N	N	
Artificial Recharge Projects - Spreading Basins (non-potable water) (M)	N	N	N	
Medical/dental offices/clinics (L)	N	N	N	
Veterinary offices/clinics (L)	N	N	N	
Surface water - streams/ lakes/rivers (L)	Y	Y	Y	L
Wells - monitoring, test holes (L)	U	U	U	

MEYERS WATER COMPANY

WELL ASSESSMENT MAP
MARCH 2022

Appendix D - Raw Water Quality Data

SED0057

Invoice: SE01492

Matthew J. Fullner Meyers Water Company 1830 Milton Rd Napa, CA 94559

RE: Report for SED0057 General - non EDT

Dear Matthew J. Fullner,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 4/6/2021. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2016 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Michelle Croft, at (916) 853-9293.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Michelle Croft, Project Manager

Shichelle Croft

Case Narrative

Project and Report Details Invoice Details

Client:Meyers Water CompanyInvoice To: Meyers Water CompanyReport To:Matthew J. FullnerInvoice Attn: Matthew J. Fullner

 Project #:
 General - non EDT
 Project PO#:

 Received:
 4/06/2021 - 15:50

Report Due: 4/21/2021

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

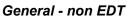
Temperature on Receipt °C: 3.2 COC/Labels Agree
Received On Blue Ice

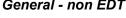
Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:


DP1.1 Sample Duplicate RPD exceeded method acceptance criteria.


MS1.0 Matrix spike recoveries exceed control limits.

Report Distribution

Recipient(s) Report Format CC:

Matthew J. Fullner MCL_FINAL.RPT jay@pjcanvas.com;juellybear@gmail.com

General - non EDT

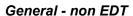
Certificate of Analysis

Sample Date - Time: 04/05/2021 - 19:40 Sample ID: SED0057-01

Sampled By: Matthew J. Fullner Matrix: Water Sample Type: Grab Sample Description: Well 003 - Zone 2 (Lower Zone)

BSK Associates Laboratory Fresno **General Chemistry**

Analyte	Method	Result	RL	Units	RL Mult	MCL	Batch	Prepared	Analyzed	Qual
Aggressive Index		12	0.0	AGGR	1		AED1146	6 04/20/21	04/20/21	
Alkalinity as CaCO3	SM 2320B	190	3.0	mg/L	1		AED040	1 04/07/21	04/07/21	
Bicarbonate as CaCO3	SM 2320B	190	3.0	mg/L	1		AED040	1 04/07/21	04/07/21	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1		AED040	1 04/07/21	04/07/21	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1		AED040	1 04/07/21	04/07/21	
Chloride	EPA 300.0	300	1.0	mg/L	1		AED039	7 04/07/21	04/07/21	
Conductivity @ 25C	SM 2510B	1300	1.0	umhos/	1		AED040	1 04/07/21	04/07/21	
				cm						
Fluoride	EPA 300.0	0.11	0.10	mg/L	1	2	AED039	7 04/07/21	04/07/21	
Langelier Index	SM 2330B	-0.16					AED1146	6 04/20/21	04/20/21	
MBAS, Calculated as LAS, mol wt 340	SM 5540C	ND	0.050	mg/L	1		AED030	1 04/07/21 19:30	04/07/21	
Nitrate + Nitrite as N	EPA 300.0	ND	0.23	mg/L	1	10	AED039	7 04/07/21 19:04	04/07/21	
Nitrate as N	EPA 300.0	ND	0.23	mg/L	1	10	AED039	7 04/07/21 19:04	04/07/21	
Nitrite as N	EPA 300.0	ND	0.050	mg/L	1	1	AED039	7 04/07/21 19:04	04/07/21	
Perchlorate	EPA 314.0	ND	2.0	ug/L	4	6	AED043	4 04/08/21	04/08/21	
Sulfate as SO4	EPA 300.0	27	1.0	mg/L	1		AED039	7 04/07/21	04/07/21	
Total Dissolved Solids	SM 2540C	710	5.0	mg/L	1		AED0430	0 04/08/21	04/08/21	


Metals

Analyte	Method	Result	RL	Units	RL Mult	MCL	Batch	Prepared	Analyzed	Qual
Aluminum	EPA 200.7	ND	0.050	mg/L	1	1	AED0541	04/12/21	04/15/21	
Antimony	EPA 200.8	ND	2.0	ug/L	1	6	AED0541	04/12/21	04/16/21	
Arsenic	EPA 200.8	ND	2.0	ug/L	1	10	AED0541	04/12/21	04/16/21	
Barium	EPA 200.7	0.40	0.050	mg/L	1	1	AED0541	04/12/21	04/15/21	
Beryllium	EPA 200.8	ND	1.0	ug/L	1	4	AED0541	04/12/21	04/16/21	
Cadmium	EPA 200.8	ND	1.0	ug/L	1	5	AED0541	04/12/21	04/16/21	
Calcium	EPA 200.7	49	0.10	mg/L	1		AED0541	04/12/21	04/15/21	
Chromium	EPA 200.8	ND	10	ug/L	1	50	AED0541	04/12/21	04/16/21	
Copper	EPA 200.8	ND	5.0	ug/L	1		AED0541	04/12/21	04/16/21	
Iron	EPA 200.7	ND	0.030	mg/L	1		AED0541	04/12/21	04/15/21	
Lead	EPA 200.8	ND	1.0	ug/L	1		AED0541	04/12/21	04/16/21	
Magnesium	EPA 200.7	43	0.10	mg/L	1		AED0541	04/12/21	04/15/21	
Manganese	EPA 200.7	1.2	0.010	mg/L	1		AED0541	04/12/21	04/15/21	
Mercury	EPA 200.8	ND	0.20	ug/L	1	2	AED0541	04/12/21	04/16/21	
Nickel	EPA 200.8	ND	10	ug/L	1	100	AED0541	04/12/21	04/16/21	
Potassium	EPA 200.7	6.1	2.0	mg/L	1		AED0541	04/12/21	04/15/21	
Selenium	EPA 200.8	6.0	2.0	ug/L	1	50	AED0541	04/12/21	04/16/21	
Silver	EPA 200.8	ND	10	ug/L	1		AED0541	04/12/21	04/16/21	
Sodium	EPA 200.7	140	1.0	mg/L	1		AED0541	04/12/21	04/15/21	
Hardness as CaCO3	CALC	300	0.66	mg/L						
Thallium	EPA 200.8	ND	1.0	ug/L	1	2	AED0541	04/12/21	04/16/21	
Zinc	EPA 200.7	ND	0.050	mg/L	1		AED0541	04/12/21	04/15/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SED0057 FINAL 04212021 1438

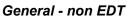
SED0057

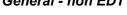
General - non EDT

Certificate of Analysis

Sample ID: SED0057-01 **Sample Date - Time:** 04/05/2021 - 19:40

Sampled By:Matthew J. FullnerMatrix:WaterSample Description:Well 003 - Zone 2 (Lower Zone)Sample Type:Grab


Organics


Analyte	Method	Result	RL	Units	RL Mult	MCL	Batch	Prepared	Analyzed	Qual
EDB and DBCP by GC-ECD										
Ethylene Dibromide (EDB)	EPA 504.1	ND	0.020	ug/L	1	0.05	AED0501	04/09/21	04/10/21	
Dibromochloropropane (DBCP)	EPA 504.1	ND	0.010	ug/L	1	0.2	AED0501	04/09/21	04/10/21	
Surrogate: 1-Br-2-Nitrobenzene	EPA 504.1	102 %	Acc	eptable ran	nge: 70-1:	30 %				
Organohalide Pesticides and I	PCBs by GC-ECD	ı								
Aldrin	EPA 505	ND	0.075	ug/L	1		AED0501	04/09/21	04/10/21	
Chlordane (Technical)	EPA 505	ND	0.10	ug/L	1	0.1	AED0501	04/09/21	04/10/21	
Dieldrin	EPA 505	ND	0.020	ug/L	1		AED0501	04/09/21	04/10/21	
Endrin	EPA 505	ND	0.10	ug/L	1	2	AED0501	04/09/21	04/10/21	
Heptachlor	EPA 505	ND	0.010	ug/L	1	0.01	AED0501	04/09/21	04/10/21	
Heptachlor Epoxide	EPA 505	ND	0.010	ug/L	1	0.01	AED0501	04/09/21	04/10/21	
Hexachlorobenzene	EPA 505	ND	0.50	ug/L	1	1	AED0501	04/09/21	04/10/21	
Hexachlorocyclopentadiene	EPA 505	ND	1.0	ug/L	1	50	AED0501	04/09/21	04/10/21	
Lindane	EPA 505	ND	0.20	ug/L	1	0.2	AED0501	04/09/21	04/10/21	
Methoxychlor	EPA 505	ND	10	ug/L	1	30	AED0501	04/09/21	04/10/21	
PCB Aroclor Screen	EPA 505	ND	0.50	ug/L	1	0.5	AED0501	04/09/21	04/10/21	
Toxaphene	EPA 505	ND	1.0	ug/L	1	3	AED0501	04/09/21	04/10/21	
Surrogate: 1-Br-2-Nitrobenzene	EPA 505	102 %	Acc	eptable rar	ige: 70-13	30 %				
EPA 505 - Simazine, Atrazine,	and Alachlor Only	Y.								
Alachlor	EPA 505	ND	1.0	ug/L	1	2	AED0501	04/09/21	04/10/21	
Atrazine	EPA 505	ND	0.50	ug/L	1	1	AED0501	04/09/21	04/10/21	
Simazine	EPA 505	ND	1.0	ug/L	1	4	AED0501	04/09/21	04/10/21	
Surrogate: 1-Br-2-Nitrobenzene	EPA 505	102 %	Acc	ceptable ran	nge: 70-13	30 %				
Chlorinated Acid Herbicides b	y GC-ECD									
2,4,5-T	EPA 515.4	ND	1.0	ug/L	1		AED0757	04/13/21	04/14/21	
2,4,5-TP (Silvex)	EPA 515.4	ND	1.0	ug/L	1	50	AED0757	04/13/21	04/14/21	
2,4-D	EPA 515.4	ND	10	ug/L	1	70	AED0757	04/13/21	04/14/21	
Bentazon	EPA 515.4	ND	2.0	ug/L	1	18	AED0757	04/13/21	04/14/21	
Dalapon	EPA 515.4	ND	10	ug/L	1	200	AED0757	04/13/21	04/14/21	
Dicamba	EPA 515.4	ND	1.5	ug/L	1		AED0757	04/13/21	04/14/21	
Dinoseb	EPA 515.4	ND	2.0	ug/L	1	7	AED0757	04/13/21	04/14/21	
Pentachlorophenol	EPA 515.4	ND	0.20	ug/L	1	1	AED0757	04/13/21	04/14/21	
Picloram	EPA 515.4	ND	1.0	ug/L	1	500	AED0757	04/13/21	04/14/21	
Surrogate: DCPAA	EPA 515.4	93 %	Acc	eptable rar	nge: 70-13	30 %				
Volatile Organics (SDWA Regu	ılated) by GC-MS									
1,1,1-Trichloroethane	EPA 524.2	ND	0.50	ug/L	1	200	AED0360	04/07/21	04/07/21	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	0.50	ug/L	1	1	AED0360	04/07/21	04/07/21	
1,1,2-Trichloro-1,2,2-trifluoroethane	EPA 524.2	ND	10	ug/L	1	1200	AED0360	04/07/21	04/07/21	
1,1,2-Trichloroethane	EPA 524.2	ND	0.50	ug/L	1	5	AED0360	04/07/21	04/07/21	
1,1-Dichloroethane	EPA 524.2	ND	0.50	ug/L	1	5	AED0360	04/07/21	04/07/21	
1,1-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	6	AED0360	04/07/21	04/07/21	
1,2,4-Trichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	5	AED0360	04/07/21	04/07/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SED0057 FINAL 04212021 1438

SED0057

General - non EDT

Certificate of Analysis

Sample ID: SED0057-01 **Sample Date - Time:** 04/05/2021 - 19:40

Sampled By:Matthew J. FullnerMatrix:WaterSample Description:Well 003 - Zone 2 (Lower Zone)Sample Type:Grab

Organics

Analyte	Method	Result	RL	Units	RL Mult	MCL	Batch	Prepared	Analyzed	Qual
Volatile Organics (SDWA Regu	lated) by GC-MS									
1,2-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	600	AED0360	04/07/21	04/07/21	
1,2-Dichloroethane	EPA 524.2	ND	0.50	ug/L	1	0.5	AED0360		04/07/21	
1,2-Dichloropropane	EPA 524.2	ND	0.50	ug/L	1	5	AED0360		04/07/21	
1,4-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	5	AED0360		04/07/21	
Benzene	EPA 524.2	ND	0.50	ug/L	1	1	AED0360	04/07/21	04/07/21	
Carbon Tetrachloride	EPA 524.2	ND	0.50	ug/L	1	0.5	AED0360	04/07/21	04/07/21	
Chlorobenzene	EPA 524.2	ND	0.50	ug/L	1	70	AED0360		04/07/21	
cis-1,2-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	6	AED0360		04/07/21	
cis-1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1		AED0360	04/07/21	04/07/21	
Dichloromethane	EPA 524.2	ND	0.50	ug/L	1	5	AED0360		04/07/21	
Ethylbenzene	EPA 524.2	ND	0.50	ug/L	1	300	AED0360		04/07/21	
m,p-Xylenes	EPA 524.2	ND	0.50	ug/L	1		AED0360		04/07/21	
Methyl-t-butyl ether	EPA 524.2	ND	0.50	ug/L	1	13	AED0360		04/07/21	
o-Xylene	EPA 524.2	ND	0.50	ug/L	1		AED0360		04/07/21	
Styrene	EPA 524.2	ND	0.50	ug/L	1	100	AED0360		04/07/21	
Tetrachloroethene (PCE)	EPA 524.2	ND	0.50	ug/L	1	5	AED0360		04/07/21	
Toluene	EPA 524.2	ND	0.50	ug/L	1	150	AED0360		04/07/21	
trans-1,2-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	10	AED0360		04/07/21	
trans-1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1		AED0360		04/07/21	
Trichloroethene (TCE)	EPA 524.2	ND	0.50	ug/L	1	5	AED0360		04/07/21	
Trichlorofluoromethane	EPA 524.2	ND	5.0	ug/L	1	150	AED0360		04/07/21	
Vinyl Chloride	EPA 524.2	ND	0.50	ug/L	1	0.5	AED0360		04/07/21	
Total 1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1	0.5	AED0360		04/07/21	
Total Xylenes	EPA 524.2	ND	0.50	ug/L	1	1750	AED0360		04/07/21	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	111 %		-	nae: 70-13					
Surrogate: Bromofluorobenzene	EPA 524.2	107 %	Acceptable range: 70-130 % Acceptable range: 70-130 %							
· ·		.57 70	7100			/•				
Carbamates by HPLC 3-Hydroxycarbofuran	EPA 531.1	ND	3.0	ua/l	1		AED0552	04/00/24	04/10/21	
3-Hydroxycarbofuran Aldicarb	EPA 531.1 EPA 531.1	ND	3.0	ug/L ug/L	1		AED0552 AED0552		04/10/21	
Aldicarb Aldicarb Sulfone	EPA 531.1 EPA 531.1	ND ND	2.0	-	1		AED0552 AED0552		04/10/21	
Aldicarb Sulfoxide	EPA 531.1	ND ND	3.0	ug/L	1		AED0552 AED0552		04/10/21	
			5.0	ug/L	1					
Carbafuran	EPA 531.1 EPA 531.1	ND ND		ug/L		10	AED0552		04/10/21	
Carbofuran Methomyl	EPA 531.1 EPA 531.1	ND ND	5.0	ug/L	1 1	18	AED0552 AED0552		04/10/21 04/10/21	
Methomyl Oxamyl		ND ND	2.0	ug/L	1	50			04/10/21	
Oxamyl	EPA 531.1	IND	20	ug/L	1	50	AED0552	04/09/21	04/10/21	
Endothall by GC-MS										
Endothall	EPA 548.1	ND	45	ug/L	1	100	AED0411	04/07/21	04/08/21	
Diquat by HPLC										
Diquat	EPA 549.2	ND	4.0	ug/L	1	20	AED0415	04/08/21	04/14/21	
1,2,3-Trichloropropane by GC-1 1,2,3-Trichloropropane	MS SIM SRL 524M-TCP	ND	0.0050	ug/L	1	0.005	AED0399	04/07/21	04/08/21	
1,2,3-menioropropane	3KL 324W-1CP	IND	0.0050	ug/L	ı	0.005	AED0399	U4/U1/Z1	04/00/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SED0057 FINAL 04212021 1438

General - non EDT

General - non EDT

Certificate of Analysis

Sample ID: SED0057-01

Sampled By: Matthew J. Fullner

Sample Description: Well 003 - Zone 2 (Lower Zone)

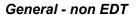
Sample Date - Time: 04/05/2021 - 19:40

Matrix: Water Sample Type: Grab

BSK Associates Sacramento General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	MCL	Batch Pro	epared	Analyzed	Qual
Color, Apparent	SM 2120B	ND	5.0	CU	1		SED0015 04	/07/21 13:32	04/07/21	
Color pH (1)	SM 4500-H+ B	7.6		pH Units	1		SED0015 04	/07/21	04/07/21	
Threshold Odor	SM 2150B	ND	1.0	T.O.N.	1		SED0011 04	/06/21 16:48	04/06/21	
pH (1)	SM 4500-H+ B	7.6	0.0	pH Units	1		SED0016 04	/07/21 13:32	04/07/21	
pH Temperature in °C		16.2								
Turbidity	SM 2130B	0.20	0.10	NTU	1		SED0015 04	/07/21 13:32	04/07/21	

BSK Associates Laboratory Fresno General Chemistry Quality Control Report


				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 30	0.0 - Qu	uality Co	ntrol					
Batch: AED0397				-						Prepared: 4/7/202
Prep Method: Method Specific Prep	aration									Analyst: BC
Blank (AED0397-BLK1)										
Fluoride	ND	0.10	mg/L							04/07/21
Nitrate as N	ND	0.23	mg/L							04/07/21
Chloride	ND	1.0	mg/L							04/07/21
Nitrite as N	ND	0.050	mg/L							04/07/21
Nitrate + Nitrite as N	ND	0.23	mg/L							04/07/21
Sulfate as SO4	ND	1.0	mg/L							04/07/21
Blank Spike (AED0397-BS1)										
Fluoride	0.99	0.10	mg/L	1.0	ND	99	90-110			04/07/21
Nitrate as N	22	0.23	mg/L	23	ND	97	90-110			04/07/21
Chloride	98	1.0	mg/L	100	ND	98	90-110			04/07/21
Nitrite as N	1.1	0.050	mg/L	1.0	ND	106	90-110			04/07/21
Sulfate as SO4	97	1.0	mg/L	100	ND	97	90-110			04/07/21
Matrix Spike (AED0397-MS1), Sourc	e: SED0068-01									
Fluoride	0.61	0.10	mg/L	0.50	ND	102	80-120			04/08/21
Nitrate as N	12	0.23	mg/L	11	0.75	99	80-120			04/08/21
Chloride	58	1.0	mg/L	50	7.6	100	80-120			04/08/21
Nitrite as N	0.45	0.050	mg/L	0.50	ND	91	75-125			04/08/21
Sulfate as SO4	52	1.0	mg/L	50	2.3	99	80-120			04/08/21
Matrix Spike (AED0397-MS2), Sourc	o: AFD0493-01									
Fluoride	0.55	0.10	mg/L	0.50	ND	111	80-120			04/08/21
Nitrate as N	11	0.10	mg/L	11	ND	101	80-120			04/08/21
Chloride	52	1.0	mg/L	50	1.1	102	80-120			04/08/21
Nitrite as N	0.47	0.050	mg/L	0.50	ND	93	75-125			04/08/21
Sulfate as SO4	52	1.0	mg/L	50	2.0	101	80-120			04/08/21
Matrix Chika Dun (AFD0207 MCD4)	Sauras SEDAGO A	4								
Matrix Spike Dup (AED0397-MSD1),				0.50	ND	404	00.400	•	40	04/00/04
Fluoride	0.62	0.10	mg/L	0.50	ND	104	80-120	2	10	04/08/21
Nitrate as N	12	0.23	mg/L	11	0.75	101	80-120	2	20	04/08/21
Chloride	58	1.0	mg/L	50	7.6	102	80-120	1	20	04/08/21
Nitrite as N Sulfate as SO4	0.46 52	0.050 1.0	mg/L mg/L	0.50 50	ND 2.3	93 100	75-125 80-120	2 1	20 20	04/08/21 04/08/21
			mg/L	30	2.0	100	00-120	ı	20	5 #100/21
Matrix Spike Dup (AED0397-MSD2),			nc = /1	0.50	ND	444	00 400	^	40	04/09/24
Fluoride	0.55	0.10	mg/L	0.50	ND	111	80-120	0	10	04/08/21
Nitrate as N	11	0.23	mg/L	11 50	ND 1.1	101	80-120	1	20	04/08/21
Chloride	52	1.0	mg/L	50 0.50	1.1 ND	101	80-120	1	20	04/08/21
Nitrite as N Sulfate as SO4	0.47 52	0.050 1.0	mg/L mg/L	0.50 50	ND 2.0	93 100	75-125 80-120	0 1	20 20	04/08/21 04/08/21
Junato 45 00 T	32	1.0	mg/∟	30	2.0	100	00-120	'	20	3 1100/21
		EPA 31	4.0 - Qւ	uality Co	ntrol					
Batch: AED0434										Prepared: 4/8/202
Prep Method: Method Specific Prep	aration									Analyst: CT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

Prep Method: Method Specific Preparation Premium (AED0434-BLK1) Parchlorate ND 2.0 ug/L	
Preparation	d Qual
Prep Method: Method Specific Preparation Dank (AED0434-BLK1) Perchiorate ND 2.0 ug/L 15 ND 94 85-115 04/08/2 Slank Spike (AED0434-BS1) Perchiorate 14 2.0 ug/L 15 ND 94 85-115 04/08/2 Matrix Spike (AED0434-MS1), Source: AED0124-01 Perchiorate 18 2.0 ug/L 20 ND 92 80-120 04/08/2 Matrix Spike Dup (AED0434-MSD1), Source: AED0124-01 Perchiorate SM 2320B - Quality Control Satch: AED0401 Perp Method: Method Specific Preparation Prep Method: Method Specific Prepar	
Stank (AED0434-BLK1)	red: 4/8/202
Perchlorate ND 2.0 ug/L	Analyst: CT
Perchlorate ND 2.0 ug/L	
Salank Spike (AED0434-BS1)	
### Perchlorate	
Matrix Spike (AED0434-MS1), Source: AED0124-01 Perchlorate 18 2.0 ug/L 20 ND 92 80-120 04/08/2 Matrix Spike Dup (AED0434-MSD1), Source: AED0124-01 Perchlorate 17 2.0 ug/L 20 ND 87 80-120 5 15 04/08/2 SM 2320B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank (AED0401-BLK1) Wakalinity as CaCO3 ND 3.0 mg/L 40/07/2 Algorithm as CaCO3 ND 3.0 mg/L 40/07/2 Algorithm as CaCO3 ND 3.0 mg/L 40/07/2 Blank Spike (AED0401-BS1) Wakalinity as CaCO3 ND 3.0 mg/L 40/07/2 Blank Spike (AED0401-BSD1) Wakalinity as CaCO3 98 3.0 mg/L 100 ND 98 80-120 04/07/2 Blank Spike Dup (AED0401-BSD1) Wakalinity as CaCO3 95 3.0 mg/L 95 1 1 0 04/08/2 Blank Spike Dup (AED0401-BSD1) Wakalinity as CaCO3 95 3.0 mg/L 77 1 1 10 04/08/2 Blank Spike Oup (AED0401-DUP1), Source: AED0619-01 Wakalinity as CaCO3 19 3.0 mg/L 77 1 1 10 04/08/2 Blank Spike Oup (AED0401-BSD1) Wakalinity as CaCO3 19 3.0 mg/L 77 1 1 10 04/08/2 Blank Spike Oup (AED0401-BSD1) Black AED0401 ND 3.0 mg/L ND 40/08/2 Blank Spike Oup (AED0401-BSD1) Black AED0401 ND 3.0 mg/L ND 40/08/2 Black AED0401 ND 40/08/2	
Perchlorate 18 2.0 ug/L 20 ND 92 80-120 04/08/2 Matrix Spike Dup (AED0434-MSD1), Source: AED0124-01 Perchlorate 17 2.0 ug/L 20 ND 87 80-120 5 15 04/08/2 SM 2320B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank (AED0401-BLK1) Alkalinity as CaCO3 ND 3.0 mg/L 04/07/2 Blank Spike (AED0401-BSD1) Alkalinity as CaCO3 ND 3.0 mg/L 04/07/2 Blank Spike (AED0401-BSD1) Alkalinity as CaCO3 ND 3.0 mg/L 100 ND 98 80-120 04/07/2 Blank Spike (AED0401-BSD1) Alkalinity as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 ND 3.0 mg/L 100 ND 99 80-120 1 00 04/08/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 1 10 04/08/2 Duplicate (AED0401-DUP1), Source: AED0619-01 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation	
Matrix Spike Dup (AED0434-MSD1), Source: AED0124-01 Perchlorate 17 2.0 ug/L 20 ND 87 80-120 5 15 04/08/2 SM 2320B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Sink (AED0401-BLK1) Sink (AED0401-BLK1) Sink (AED0401-BLK1) Sink (AED0401-BLK1) Sink (AED0401-BLK1) Sink (AED0401-BSD1) Sink (
SM 2320B - Quality Control SM 2320B - Quality Control Prep.	
SM 2320B - Quality Control	
Prep. Method: Method Specific Preparation Prep. Method: Meth	
Prep. Method: Method Specific Preparation Prep. Prep. Prep. Method: Method Specific Preparation Prep. Prep. Prep. Prep. Method: Method Specific Preparation Prep.	
Salark (AED0401-BLK1) Salark (AED0401-BLK1) Salark (AED0401-BLK1) Salark (AED0401-BLK1) Salark (AED0401-BLK1) Salark (AED0401-BLK1) Salark Spike (AED0401-BSD1) Salark Spi	red: 4/7/202
Blank (AED0401-BLK1)	Analyst: CE
Alkalinity as CaCO3 ND 3.0 mg/L 04/07/2 Bicarbonate as CaCO3 ND 3.0 mg/L 04/07/2 Carbonate as CaCO3 ND 3.0 mg/L 100 ND 98 80-120 04/07/2 Carbonate as CaCO3 98 3.0 mg/L 100 ND 98 80-120 04/07/2 Carbonate as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Carbonate as CaCO3 95 3.0 mg/L 95 1 1 0 04/08/2 Carbonate as CaCO3 76 3.0 mg/L 77 1 1 10 04/08/2 Carbonate as CaCO3 76 3.0 mg/L 77 1 1 10 04/08/2 Carbonate as CaCO3 76 3.0 mg/L 18 6 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Carbonate as CaCO3 ND 3.0 mg/L ND 10 04/08/2 Carbonate as CaCO3 ND 3.0 mg/L ND 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L ND 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L ND 10 04/08/2 Carbonate as CaCO3 10 3.0 mg/L ND 94 90-110 04/08/2 Carbonate as CaCO3 10 3.0 mg/L ND 94 90-110 04/08/2 Carbonate as CaCO3 10 3.0 mg/L ND 94 90-110 04/08/2 Carbonate as CaCO3 10 3.0 mg/L ND 94 90-110 04/08/2	
Sicarbonate as CaCO3	
Carbonate as CaCO3 ND 3.0 mg/L 04/07/2 Hydroxide as CaCO3 ND 3.0 mg/L 04/07/2 Blank Spike (AED0401-BS1) Alkalinity as CaCO3 98 3.0 mg/L 100 ND 98 80-120 04/07/2 Blank Spike Dup (AED0401-BSD1) Alkalinity as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Darbonate as CaCO3 76 3.0 mg/L 77 1 10 04/08/2 Carbonate as CaCO3 70 10 04/08/2 Carbonate as CaCO3 10 04/08/2 Carbonate as CaCO3 10	
Hydroxide as CaCO3 ND 3.0 mg/L 04/07/2 Blank Spike (AED0401-BS1)	
Alkalinity as CaCO3 98 3.0 mg/L 100 ND 98 80-120 04/07/2 Blank Spike Dup (AED0401-BSD1) Alkalinity as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Bicarbonate as CaCO3 76 3.0 mg/L 77 1 1 0 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Alydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Alkalinity as CaCO3 98 3.0 mg/L 100 ND 98 80-120 04/07/2 Blank Spike Dup (AED0401-BSD1) Alkalinity as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Bicarbonate as CaCO3 76 3.0 mg/L 77 1 1 0 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Hydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Alkalinity as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Bicarbonate as CaCO3 76 3.0 mg/L 77 1 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Hydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Alkalinity as CaCO3 99 3.0 mg/L 100 ND 99 80-120 1 20 04/07/2 Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Bicarbonate as CaCO3 76 3.0 mg/L 77 1 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Hydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Duplicate (AED0401-DUP1), Source: AED0619-01 Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Bicarbonate as CaCO3 76 3.0 mg/L 77 1 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Hydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Alkalinity as CaCO3 95 3.0 mg/L 95 1 10 04/08/2 Bicarbonate as CaCO3 76 3.0 mg/L 77 1 10 04/08/2 Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Hydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Sicarbonate as CaCO3	
Carbonate as CaCO3 19 3.0 mg/L 18 6 10 04/08/2 Hydroxide as CaCO3 ND 3.0 mg/L ND 10 04/08/2 SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
SM 2510B - Quality Control SM 2510B - Quality Control	
SM 2510B - Quality Control Batch: AED0401 Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Batch: AED0401 Prep. Prep. Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Prep Method: Method Specific Preparation Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	
Blank Spike (AED0401-BS1) Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	red: 4/7/202
Conductivity @ 25C 1300 1.0 umhos/cm 1400 ND 94 90-110 04/07/2	Analyst: CE
Blank Spike Dup (AED0401-BSD1)	
Conductivity @ 25C 1400 1.0 umhos/cm 1400 ND 96 90-110 2 5 04/07/2	
Duplicate (AED0401-DUP1), Source: AED0619-01	
Conductivity @ 25C 410 1.0 umhos/cm 410 1 5 04/08/2	
he results in this report apply to the samples analyzed in coordance with the chain of custody document. This	1212021 143
palytical report must be reproduced in its entirety.	nge 8 of 3

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 25	40C - Qı	uality Co	ntrol					
Batch: AED0430										Prepared: 4/8/2021
Prep Method: Method Specific Prepa	ration									Analyst: SY\
Blank (AED0430-BLK1)										
Total Dissolved Solids	ND	5.0	mg/L							04/08/21
Blank Spike (AED0430-BS1)										
Total Dissolved Solids	1000		mg/L	1000		100	70-130			04/08/21
Duplicate (AED0430-DUP1), Source: A	AED0488-02									
Total Dissolved Solids	500	5.0	mg/L		560			12	10	04/08/21 DP1.1
Duplicate (AED0430-DUP2), Source: A	AED0434-01									
Total Dissolved Solids	750	5.0	mg/L		770			1	10	04/08/21
		SM 55	40C - Qւ	uality Co	ntrol					
Batch: AED0301										Prepared: 4/6/2021
Prep Method: Method Specific Prepa	ration									Analyst: SYY
Blank (AED0301-BLK1)										
MBAS, Calculated as LAS, mol wt 340	ND	0.050	mg/L							04/07/21
Blank Spike (AED0301-BS1)										
MBAS, Calculated as LAS, mol wt 340	0.98	0.050	mg/L	1.0	ND	98	82-112			04/07/21
Blank Spike Dup (AED0301-BSD1)										
MBAS, Calculated as LAS, mol wt 340	0.99	0.050	mg/L	1.0	ND	99	82-112	0	20	04/07/21
Matrix Spike (AED0301-MS1), Source	: AED0262-01									
MBAS, Calculated as LAS, mol wt 340	0.98	0.050	mg/L	1.0	ND	98	80-112			04/07/21
Matrix Spike Dup (AED0301-MSD1), S	ource: AED0262-0	1								
MBAS, Calculated as LAS, mol wt 340	0.98	0.050	mg/L	1.0	ND	98	80-112	0	20	04/07/21

BSK Associates Laboratory Fresno Metals Quality Control Report

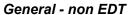
			Spike	Source		%REC		RPD	Date	
Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
	EPA 20	0.7 - Qı	uality Co	ntrol						
									Prepare	d: 4/12/20
										nalyst: MD
ND	0.050	mg/L							04/15/21	
ND	0.050	-							04/15/21	
ND	0.10	-							04/15/21	
ND	0.030	-							04/15/21	
ND	2.0	-							04/15/21	
ND	0.10	-							04/15/21	
		-								
		-								
ND	0.050	mg/L							04/15/21	
0.18	0.050	ma/l	0.20	ND	89	85-115			04/15/21	
		-								
		-								
		-								
		-								
		-								
		-								
		-								
0.20	0.050	mg/L	0.20	ND	99	85-115			04/15/21	
0.19	0.050	ma/l	0.20	ND	93	85-115	4	20	04/15/21	
		-								
		-								
		-								
		-								
		-								
		-								
		-								
0.20	0.050	mg/L	0.20	ND	99	85-115	1	20	04/15/21	
ce: SED0085-01										
	0.050	ma/l	0.20	ND	84	70-130			04/15/21	
		•								
		-								
		•								
		•								
		•								
		-								
		•								
0.21	0.050	mg/L mg/L	0.20	26 ND	103	70-130			04/15/21	
re SEDONS-02										
0.18	0.050	mg/L	0.20	ND	91	70-130			04/15/21	
				INI)	y i	/ U= 1 3()				
	ND N	ND 0.050 ND 0.050 ND 0.10 ND 0.030 ND 0.10 ND 0.10 ND 0.10 ND 0.10 ND 0.010 ND 0.050 0.18 0.050 0.19 0.050 3.8 0.10 0.20 0.030 4.2 2.0 3.9 0.10 0.19 0.010 4.2 1.0 0.20 0.050 0.19 0.050 0.19 0.050	ND 0.050 mg/L ND 0.050 mg/L ND 0.10 mg/L ND 0.030 mg/L ND 0.10 mg/L ND 0.10 mg/L ND 0.010 mg/L ND 0.050 mg/L ND 0.050 mg/L ND 0.050 mg/L ND 0.050 mg/L 0.19 0.050 mg/L 3.8 0.10 mg/L 0.20 0.030 mg/L 4.2 2.0 mg/L 3.9 0.10 mg/L 0.19 0.010 mg/L 0.19 0.050 mg/L 4.2 1.0 mg/L 0.20 0.050 mg/L 4.2 1.0 mg/L 0.20 0.050 mg/L 4.1 1.0 mg/L 0.20 0.030 mg/L 4.1 2.0 mg/L 0.20 0.030 mg/L 4.1 1.0 mg/L 0.20 0.050 mg/L 0.19 0.050 mg/L 0.19 0.050 mg/L 0.19 0.050 mg/L 0.20 0.030 mg/L 0.19 0.050 mg/L 0.19 0.050 mg/L 0.19 0.050 mg/L 0.20 0.030 mg/L 0.19 0.010 mg/L 0.19 0.010 mg/L 0.19 0.010 mg/L 0.21 0.050 mg/L	ND	ND	ND	ND	ND	ND	Result RL Units Level Result W.REC Limits RPD Limit Analyzed

analytical report must be reproduced in its entirety.

analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Metals Quality Control Report

Analyte	Result	RI	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
mayo	Room			uality Co		701123	Zimito	10 5		rmaryzou	Quai
atch: AED0541		,,,_,	, c \(\mathcal{Q} \)	aunty CC						Prepared	I· 4/12/2
rep Method: EPA 200.2											alyst: N
Top Metrica. El A 200.2										All	aryst. I
atrix Spike (AED0541-MS4), Sou											
alcium	18	0.10	mg/L	4.0	14	110	70-130			04/15/21	
on 	0.21	0.030	mg/L	0.20	ND	104	70-130			04/15/21	
otassium	5.7	2.0	mg/L	4.0	ND	99	70-130			04/15/21	
agnesium	12	0.10	mg/L	4.0	7.5	107	70-130			04/15/21	
anganese	0.19	0.010	mg/L	0.20	ND or	95	70-130			04/15/21	
odium	30 0.20	1.0	mg/L	4.0 0.20	25 ND	129 100	70-130			04/15/21	
nc	0.20	0.050	mg/L	0.20	ND	100	70-130			04/15/21	
atrix Spike Dup (AED0541-MSD											
uminum	0.18	0.050	mg/L	0.20	ND	89	70-130	6	20	04/15/21	
arium 	0.21	0.050	mg/L	0.20	ND	107	70-130	1	20	04/15/21	
alcium	18	0.10	mg/L	4.0	14	102	70-130	2	20	04/15/21	
on	0.21	0.030	mg/L	0.20	ND	107	70-130	0	20	04/15/21	
otassium	5.7	2.0	mg/L	4.0	ND	99	70-130	4	20	04/15/21	
agnesium	12	0.10	mg/L	4.0	7.5	103	70-130	1	20	04/15/21	
anganese	0.19	0.010	mg/L	0.20	ND	95	70-130	1	20	04/15/21	
odium	30	1.0	mg/L	4.0	26	107	70-130	1	20	04/15/21	
nc	0.21	0.050	mg/L	0.20	ND	103	70-130	0	20	04/15/21	
atrix Spike Dup (AED0541-MSD	4), Source: SED0085-02										
luminum	0.19	0.050	mg/L	0.20	ND	97	70-130	6	20	04/15/21	
arium	0.21	0.050	mg/L	0.20	ND	106	70-130	0	20	04/15/21	
alcium	18	0.10	mg/L	4.0	14	97	70-130	3	20	04/15/21	
on	0.21	0.030	mg/L	0.20	ND	106	70-130	2	20	04/15/21	
otassium	5.5	2.0	mg/L	4.0	ND	95	70-130	3	20	04/15/21	
agnesium	12	0.10	mg/L	4.0	7.5	103	70-130	1	20	04/15/21	
anganese	0.19	0.010	mg/L	0.20	ND	96	70-130	1	20	04/15/21	
odium	29	1.0	mg/L	4.0	25	106	70-130	3	20	04/15/21	
nc	0.21	0.050	mg/L	0.20	ND	103	70-130	3	20	04/15/21	
		EPA 20	00.8 - Qı	uality Co	ntrol						
Satch: AED0541										Prepared	l: 4/12/2
rep Method: EPA 200.2										Aı	nalyst: I
ank (AED0541-BLK1)											
eryllium	ND	1.0	ug/L							04/16/21	
hromium	ND	10	ug/L							04/16/21	
ickel	ND	10	ug/L							04/16/21	
opper	ND	5.0	ug/L							04/16/21	
senic	ND	2.0	ug/L							04/16/21	
elenium	ND	2.0	ug/L							04/16/21	
lver	ND	10	ug/L							04/16/21	
	ND	1.0	ug/L							04/16/21	
admium			/1							04/16/21	
admium ntimony	ND	2.0	ug/L							04/10/21	
	ND ND	2.0 1.0	ug/L ug/L							04/16/21	


Page 11 of 38

BSK Associates Laboratory Fresno Metals Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD		Analyzed Qual
Databa AEDOS44		EPA 20	JU.8 - Q	uality Co	ntroi					D
Batch: AED0541										Prepared: 4/12/202
Prep Method: EPA 200.2										Analyst: PS
Blank (AED0541-BLK1)										
Mercury	ND	0.20	ug/L							04/16/21
Blank Spike (AED0541-BS1)										
Beryllium	210	1.0	ug/L	200	ND	106	85-115			04/16/21
Chromium	200	10	ug/L	200	ND	98	85-115			04/16/21
Nickel	190	10	ug/L	200	ND	94	85-115			04/16/21
Copper	180	5.0	ug/L	200	ND	92	85-115			04/16/21
Arsenic	190	2.0	ug/L	200	ND	96	85-115			04/16/21
Selenium	190	2.0	ug/L	200	ND	93	85-115			04/16/21
Silver	96	10	ug/L	100	ND	96	75-125			04/16/21
Cadmium	190	1.0	ug/L	200	ND	97	85-115			04/16/21
Antimony	200	2.0	ug/L	200	ND	100	85-115			04/16/21
Γhallium	200	1.0	ug/L	200	ND	100	85-115			04/16/21
∟ead	210	1.0	ug/L	200	ND	103	85-115			04/16/21
Mercury	4.9	0.20	ug/L	5.0	ND	97	85-115			04/16/21
Blank Spike Dup (AED0541-BSD1)										
Beryllium	200	1.0	ua/l	200	ND	102	85-115	4	20	04/16/21
<u>-</u>	190		ug/L						20	
Chromium		10	ug/L	200	ND	97	85-115 85-115	1	20	04/16/21
Nickel	190	10	ug/L	200	ND	94	85-115 85-115	0	20	04/16/21
Copper	190	5.0	ug/L	200	ND	93	85-115	1	20	04/16/21
Arsenic	190	2.0	ug/L	200	ND	95	85-115	1	20	04/16/21
Selenium	180	2.0	ug/L	200	ND	90	85-115	2	20	04/16/21
Silver	96	10	ug/L	100	ND	96	75-125	0	20	04/16/21
Cadmium	190	1.0	ug/L	200	ND	97	85-115	0	20	04/16/21
Antimony	200	2.0	ug/L	200	ND	101	85-115	1	20	04/16/21
Гhallium	200	1.0	ug/L	200	ND	100	85-115	0	20	04/16/21
_ead	200	1.0	ug/L	200	ND	102	85-115	1	20	04/16/21
Mercury	4.9	0.20	ug/L	5.0	ND	99	85-115	2	20	04/16/21
Matrix Spike (AED0541-MS1), Source:										
Beryllium	220	1.0	ug/L	200	ND	110	70-130			04/16/21
Chromium	200	10	ug/L	200	ND	99	70-130			04/16/21
Nickel	190	10	ug/L	200	ND	94	70-130			04/16/21
Copper	180	5.0	ug/L	200	ND	91	70-130			04/16/21
Arsenic	190	2.0	ug/L	200	ND	96	70-130			04/16/21
Selenium	180	2.0	ug/L	200	ND	91	70-130			04/16/21
Silver	92	10	ug/L	100	ND	92	70-130			04/16/21
Cadmium	190	1.0	ug/L	200	ND	96	70-130			04/16/21
Antimony	200	2.0	ug/L	200	ND	102	70-130			04/16/21
⁻ hallium	200	1.0	ug/L	200	ND	99	70-130			04/16/21
_ead	200	1.0	ug/L	200	ND	101	70-130			04/16/21
Mercury	4.8	0.20	ug/L	5.0	ND	96	70-130			04/16/21
Matrix Spike Dup (AED0541-MSD1), So	ource: SED0085-0	1								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Metals Quality Control Report

				Spike	Source		%REC	RP	D Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD Lim	it Analyzed	Qual

EPA 200.8	- Quality	Control
-----------	-----------	---------

Batch: AED0541	Prepared: 4/12/2021
Prep Method: EPA 200.2	Analyst: PSK
Matrix Spike Dup (AED0541-MSD1), Source: SED0085-01	

Matrix Spike Dup (AED0541-MSD	1), Source: SED0085-01									
Chromium	200	10	ug/L	200	ND	102	70-130	4	20	04/16/21
Nickel	190	10	ug/L	200	ND	95	70-130	1	20	04/16/21
Copper	180	5.0	ug/L	200	ND	92	70-130	1	20	04/16/21
Arsenic	200	2.0	ug/L	200	ND	98	70-130	2	20	04/16/21
Selenium	180	2.0	ug/L	200	ND	91	70-130	0	20	04/16/21
Silver	95	10	ug/L	100	ND	95	70-130	3	20	04/16/21
Cadmium	200	1.0	ug/L	200	ND	98	70-130	2	20	04/16/21
Antimony	210	2.0	ug/L	200	ND	104	70-130	2	20	04/16/21
Thallium	200	1.0	ug/L	200	ND	100	70-130	1	20	04/16/21
Lead	200	1.0	ug/L	200	ND	102	70-130	2	20	04/16/21
Mercury	5.0	0.20	ug/L	5.0	ND	100	70-130	4	20	04/16/21

BSK Associates Laboratory Fresno Organics Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 50)4.1 - Qı	uality Co	ntrol					
Batch: AED0501										Prepared: 4/9/202
Prep Method: EPA 504/505										Analyst: JKI
Blank (AED0501-BLK1)										
Ethylene Dibromide (EDB)	ND	0.020	ug/L							04/09/21
Dibromochloropropane (DBCP)	ND	0.010	ug/L							04/09/21
Surrogate: 1-Br-2-Nitrobenzene	0.49			0.46		107	70-130			04/09/21
Blank Spike (AED0501-BS1)										
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	108	70-130			04/09/21
Dibromochloropropane (DBCP)	0.11	0.010	ug/L	0.10	ND	106	70-130			04/09/21
Surrogate: 1-Br-2-Nitrobenzene	0.48			0.46		106	70-130			04/09/21
Blank Spike Dup (AED0501-BSD1)										
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	106	70-130	2	20	04/10/21
Dibromochloropropane (DBCP)	0.10	0.010	ug/L	0.10	ND	103	70-130	3	20	04/10/21
Surrogate: 1-Br-2-Nitrobenzene	0.47			0.46		104	70-130			04/10/21
Matrix Spike (AED0501-MS1), Source	: AED0248-02									
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	107	65-135			04/09/21
Dibromochloropropane (DBCP)	0.11	0.010	ug/L	0.10	ND	106	65-135			04/09/21
Surrogate: 1-Br-2-Nitrobenzene	0.49			0.46		106	70-130			04/09/21
Matrix Spike Dup (AED0501-MSD1), \$	Source: AED0248-0	02								
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	107	65-135	1	20	04/09/21
Dibromochloropropane (DBCP)	0.10	0.010	ug/L	0.10	ND	105	65-135	1	20	04/09/21
Surrogate: 1-Br-2-Nitrobenzene	0.47			0.46		103	70-130			04/09/21
		EPA 5	05 - Qu	ality Cor	itrol					
Batch: AED0501										Prepared: 4/9/2021
Prep Method: EPA 504/505										Analyst: JKF
Blank (AED0501-BLK1)										
Alachlor	ND	1.0	ug/L							04/09/21
Aldrin	ND	0.075	ug/L							04/09/21
Atrazine	ND	0.50	ug/L							04/09/21
Chlordane (Technical)	ND	0.10	ug/L							04/09/21
Dieldrin	ND	0.020	ug/L							04/09/21
Endrin	ND	0.10	ug/L							04/09/21
Heptachlor	ND	0.010	ug/L							04/09/21
Heptachlor Epoxide	ND	0.010	ug/L							04/09/21
Hexachlorobenzene	ND	0.50	ug/L							04/09/21
Hexachlorocyclopentadiene	ND	1.0	ug/L							04/09/21
Lindane	ND	0.20	ug/L							04/09/21
Methoxychlor	ND	10	ug/L							04/09/21
PCB Aroclor Screen	ND	0.50	ug/L							04/09/21
Simazine	ND	1.0	ug/L							04/09/21
	ND	4.0	/1							04/09/21
Toxaphene	ND	1.0	ug/L							04/03/21

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Organics Quality Control Report

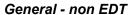
		rganics C	-,				0/ DE0-		DDB		
Analyte	Result	RI	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
Analyte	Result					MICEO	Lilling	INI D	Lillie	Allalyzeu	Quai
Batch: AED0501		EPA 5	05 - Qu	ality Cor	itroi					Dropar	od: 4/0/201
											ed: 4/9/202
Prep Method: EPA 504/505										Α	ınalyst: JK
Blank Spike (AED0501-BS1)											
Alachlor	4.1	1.0	ug/L	4.0	ND	102	70-130			04/09/21	
Aldrin	0.75	0.075	ug/L	0.74	ND	102	70-130			04/09/21	
Atrazine	5.4	0.50	ug/L	5.0	ND	107	70-130			04/09/21	
Dieldrin	0.20	0.020	ug/L	0.20	ND	100	70-130			04/09/21	
Endrin	0.096	0.10	ug/L	0.10	ND	96	70-130			04/09/21	
Heptachlor	0.10	0.010	ug/L	0.10	ND	100	70-130			04/09/21	
leptachlor Epoxide	0.10	0.010	ug/L	0.10	ND	100	70-130			04/09/21	
lexachlorobenzene	1.0	0.50	ug/L	1.0	ND	104	70-130			04/09/21	
Hexachlorocyclopentadiene	1.0	1.0	ug/L	1.0	ND	102	70-130			04/09/21	
indane	0.20	0.20	ug/L	0.20	ND	100	70-130			04/09/21	
Methoxychlor	0.98	10	ug/L	1.0	ND	98	70-130			04/09/21	
Simazine	11	1.0	ug/L	10	ND	110	70-130			04/09/21	
Surrogate: 1-Br-2-Nitrobenzene	0.48			0.46		106	70-130			04/09/21	
Blank Spike Dup (AED0501-BSD1)											
Alachlor	4.1	1.0	ug/L	4.0	ND	102	70-130	1	20	04/10/21	
ldrin	0.75	0.075	ug/L	0.74	ND	101	70-130	1	20	04/10/21	
trazine	5.3	0.50	ug/L	5.0	ND	106	70-130	1	20	04/10/21	
Dieldrin	0.20	0.020	ug/L	0.20	ND	98	70-130	2	20	04/10/21	
Endrin	0.087	0.10	ug/L	0.10	ND	87	70-130	9	20	04/10/21	
leptachlor	0.095	0.010	ug/L	0.10	ND	95	70-130	6	20	04/10/21	
leptachlor Epoxide	0.099	0.010	ug/L	0.10	ND	99	70-130	2	20	04/10/21	
Hexachlorobenzene	1.0	0.50	ug/L	1.0	ND	101	70-130	3	20	04/10/21	
Hexachlorocyclopentadiene	1.0	1.0	ug/L	1.0	ND	100	70-130	2	20	04/10/21	
indane	0.20	0.20	ug/L	0.20	ND	99	70-130	1	20	04/10/21	
Methoxychlor	0.93	10	ug/L	1.0	ND	93	70-130	6	20	04/10/21	
Simazine	11	1.0	ug/L	10	ND	106	70-130	3	20	04/10/21	
Surrogate: 1-Br-2-Nitrobenzene	0.47	1.0	ug/L	0.46	NB	104	70-130	Ü	20	04/10/21	
	. = = = = = = = = = = = = = = = = = = =										
Matrix Spike (AED0501-MS1), Sourc		1.0	ua/l	4.0	ND	102	65 125			04/00/21	
lachlor	4.1	1.0	ug/L	4.0	ND	103	65-135			04/09/21	
ldrin	0.72	0.075	ug/L	0.74	ND	97	65-135			04/09/21	
trazine	5.2	0.50	ug/L	5.0	ND	104	65-135			04/09/21	
Dieldrin Endrin	0.20 0.092	0.020 0.10	ug/L	0.20 0.10	ND ND	99	65-135 65-135			04/09/21 04/09/21	
			ug/L		ND	92					
leptachlor	0.096	0.010	ug/L	0.10	ND	96 101	65-135			04/09/21	
leptachlor Epoxide	0.10	0.010	ug/L	0.10	ND	101	65-135			04/09/21	
lexachlorobenzene	1.0	0.50	ug/L	1.0	ND	102	65-135			04/09/21	
lexachlorocyclopentadiene	1.0	1.0	ug/L	1.0	ND ND	103	65-135 65-135			04/09/21	
indane Asthonyahlar	0.20	0.20	ug/L	0.20	ND	100	65-135			04/09/21	
Methoxychlor	0.97	10	ug/L	1.0	ND ND	97 100	65-135			04/09/21	
Simazine Surrogate: 1-Br-2-Nitrobenzene	10 <i>0.4</i> 9	1.0	ug/L	10 <i>0.46</i>	ND	100 106	65-135 70-130			04/09/21 04/09/21	
-		_									
Matrix Spike Dup (AED0501-MSD1),				4.0	ND	400	65.405	•	00	04/00/04	
Alachlor	4.0	1.0	ug/L	4.0	ND	100	65-135	3	20	04/09/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Organics Quality Control Report

				Spike	Source		%REC		RPD	Doto	
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC	RPD		Date Analyzed	Qual
,											
Batch: AED0501		EPA 5	05 - Qu	ality Cor	itroi					Prenare	ed: 4/9/202
Prep Method: EPA 504/505										•	nalyst: JK
Top Method. El A 004/000											naiyst. Jik
Matrix Spike Dup (AED0501-MSD1),	Source: AED0248-0	2									
Aldrin	0.73	0.075	ug/L	0.74	ND	98	65-135	1	20	04/09/21	
Atrazine	4.7	0.50	ug/L	5.0	ND	95	65-135	9	20	04/09/21	
Dieldrin	0.19	0.020	ug/L	0.20	ND	97	65-135	2	20	04/09/21	
Endrin	0.093	0.10	ug/L	0.10	ND	93	65-135	1	20	04/09/21	
Heptachlor	0.095	0.010	ug/L	0.10	ND	95	65-135	1	20	04/09/21	
Heptachlor Epoxide	0.096	0.010	ug/L	0.10	ND	96	65-135	5	20	04/09/21	
Hexachlorobenzene	1.0	0.50	ug/L	1.0	ND	103	65-135	0	20	04/09/21	
Hexachlorocyclopentadiene	1.0	1.0	ug/L	1.0	ND	104	65-135	1	20	04/09/21	
indane	0.20	0.20	ug/L	0.20	ND	98	65-135	3	20	04/09/21	
Methoxychlor	0.98	10	ug/L	1.0	ND	99	65-135	2	20	04/09/21	
Simazine	8.8	1.0	ug/L	10	ND	88	65-135	14	20	04/09/21	
Surrogate: 1-Br-2-Nitrobenzene	0.47			0.46		103	70-130			04/09/21	
		EPA 51	5.4 - Qı	uality Co	ntrol						
Batch: AED0757				Ū						Prepare	d: 4/13/202
Prep Method: EPA 515.4											nalyst: PN
Blank (AED0757-BLK1)	NB	4.0								04/44/04	
2,4,5-T	ND	1.0	ug/L							04/14/21	
2,4,5-TP (Silvex)	ND	1.0	ug/L							04/14/21	
2,4-D	ND	10	ug/L							04/14/21	
Sentazon	ND	2.0	ug/L							04/14/21	
Dalapon Diagram	ND	10	ug/L							04/14/21	
Dicamba	ND	1.5	ug/L							04/14/21	
Dinoseb	ND	2.0	ug/L							04/14/21	
Pentachlorophenol	ND	0.20	ug/L							04/14/21	
^P icloram S <i>urrogate: DCPAA</i>	ND 36	1.0	ug/L	36		101	70-130			04/14/21 04/14/21	
Surrogate. DOFAA	30			30		101	70-730			04/14/21	
Blank Spike (AED0757-BS1)											
2,4,5-T	1.7	1.0	ug/L	1.6	ND	106	70-130			04/14/21	
2,4,5-TP (Silvex)	0.83	1.0	ug/L	0.80	ND	104	70-130			04/14/21	
2,4-D	0.41	10	ug/L	0.40	ND	103	70-130			04/14/21	
Bentazon	2.1	2.0	ug/L	2.0	ND	103	70-130			04/14/21	
Dalapon	4.2	10	ug/L	4.0	ND	104	70-130			04/14/21	
Dicamba	0.82	1.5	ug/L	0.80	ND	103	70-130			04/14/21	
Dinoseb	0.85	2.0	ug/L	0.80	ND	107	70-130			04/14/21	
Pentachlorophenol	0.17	0.20	ug/L	0.16	ND	108	70-130			04/14/21	
Picloram	0.42	1.0	ug/L	0.40	ND	106	70-130			04/14/21	
Surrogate: DCPAA	34			36		95	70-130			04/14/21	
Blank Spike Dup (AED0757-BSD1)											
2,4,5-T	1.6	1.0	ug/L	1.6	ND	102	70-130	4	20	04/15/21	
2,4,5-TP (Silvex)	0.82	1.0	ug/L	0.80	ND	102	70-130	2	20	04/15/21	
,		10	ug/L	0.40	ND	100	70-130	3	20	04/15/21	
2,4-D	0.40	10	ug/L	0.40	110	100	70-100	J	20	0-7/10/21	


Page 16 of 38

analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Organics Quality Control Report

Analyta	Populá	D.	Unite	Spike	Source	% BEC	%REC	DDD	RPD	Date
Analyte	Result		Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 5	15.4 - Qı	uality Co	ntrol					
Batch: AED0757										Prepared: 4/13/20
Prep Method: EPA 515.4										Analyst: PN
Blank Spike Dup (AED0757-BSD1)										
Dalapon	4.2	10	ug/L	4.0	ND	106	70-130	2	20	04/15/21
Dicamba	0.82	1.5	ug/L	0.80	ND	102	70-130	1	20	04/15/21
Dinoseb	0.88	2.0	ug/L	0.80	ND	110	70-130	3	20	04/15/21
Pentachlorophenol	0.17	0.20	ug/L	0.16	ND	104	70-130	4	20	04/15/21
Picloram	0.40	1.0	ug/L	0.40	ND	100	70-130	6	20	04/15/21
Surrogate: DCPAA	33			36		90	70-130			04/15/21
Matrix Spike (AED0757-MS1), Source	ce: AED0661-01									
2,4,5-T	1.7	1.0	ug/L	1.6	ND	108	70-130			04/14/21
2,4,5-TP (Silvex)	0.85	1.0	ug/L	0.80	ND	106	70-130			04/14/21
2,4-D	0.41	10	ug/L	0.40	ND	102	70-130			04/14/21
3entazon	1.9	2.0	ug/L	2.0	ND	93	70-130			04/14/21
Dalapon	4.1	10	ug/L	4.0	ND	103	70-130			04/14/21
Dicamba	0.82	1.5	ug/L	0.80	ND	102	70-130			04/14/21
Dinoseb	0.88	2.0	ug/L	0.80	ND	111	70-130			04/14/21
Pentachlorophenol	0.18	0.20	ug/L	0.16	ND	110	70-130			04/14/21
Picloram	0.40	1.0	ug/L	0.40	ND	100	70-130			04/14/21
Surrogate: DCPAA	33	1.0	ug/L	36	ND	93	70-130			04/14/21
Matrix Spike Dup (AED0757-MSD1),	Source: AED0661 (14								
2,4,5-T	1.6	1.0	ug/L	1.6	ND	103	70-130	5	30	04/14/21
2,4,5-TP (Silvex)	0.83	1.0	ug/L	0.80	ND	103	70-130	2	30	04/14/21
2,4-D	0.40	10	ug/L	0.40	ND	99	70-130	3	30	04/14/21
Bentazon	1.9	2.0	ug/L	2.0	ND	96	70-130	3	30	04/14/21
Dalapon	4.0	10	ug/L	4.0	ND	101	70-130	2	30	04/14/21
Dicamba	0.79	1.5	ug/L ug/L	0.80	ND	98	70-130	4	30	04/14/21
	0.79	2.0	-		ND	110	70-130	1	30	04/14/21
Dinoseb			ug/L	0.80						
Pentachlorophenol	0.17	0.20	ug/L	0.16	ND	109	70-130	1	30	04/14/21
Picloram	0.38	1.0	ug/L	0.40	ND	95	70-130	6	30	04/14/21 04/14/21
Surrogate: DCPAA	33			36		92	70-130			04/14/21
		EPA 52	24.2 - Qı	uality Co	ntrol					
Batch: AED0360 Prep Method: EPA 524.2										Prepared: 4/7/20 Analyst: AN
Tep method. Lt A 524.2										Allalyst. All
Blank (AED0360-BLK1)	·	2 = 4								0.4/0.7/0.4
1,1,1-Trichloroethane	ND	0.50	ug/L							04/07/21
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L							04/07/21
I,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	ug/L							04/07/21
I,1,2-Trichloroethane	ND	0.50	ug/L							04/07/21
I,1-Dichloroethane	ND	0.50	ug/L							04/07/21
1,1-Dichloroethene	ND	0.50	ug/L							04/07/21
1,2,4-Trichlorobenzene	ND	0.50	ug/L							04/07/21
1,2-Dichlorobenzene	ND	0.50	ug/L							04/07/21
1,2-Dichloroethane	ND	0.50	ug/L							04/07/21
,2-Dichloropropane	ND	0.50	ug/L							04/07/21
he results in this report apply to the samp coordance with the chain of custody docu-	ument. This							S	SED005	7 FINAL 04212021 14

BSK Associates Laboratory Fresno **Organics Quality Control Report**

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD Limit	Date Analyzed	Qual
		EPA 52	24.2 - Qı	uality Co	ntrol					
Batch: AED0360				-					Prepar	ed: 4/7/202
Prep Method: EPA 524.2									•	nalyst: ANN
Blank (AED0360-BLK1)										
,4-Dichlorobenzene	ND	0.50	ug/L						04/07/21	
Benzene	ND	0.50	ug/L						04/07/21	
Carbon Tetrachloride	ND	0.50	ug/L						04/07/21	
Chlorobenzene	ND	0.50	ug/L						04/07/21	
sis-1,2-Dichloroethene	ND	0.50	ug/L						04/07/21	
sis-1,3-Dichloropropene	ND	0.50	ug/L						04/07/21	
Dichloromethane	ND	0.50	ug/L						04/07/21	
Ethylbenzene	ND	0.50	ug/L						04/07/21	
n,p-Xylenes	ND	0.50	ug/L						04/07/21	
Methyl-t-butyl ether	ND	0.50	ug/L						04/07/21	
o-Xylene	ND	0.50	ug/L						04/07/21	
Styrene	ND	0.50	ug/L						04/07/21	
etrachloroethene (PCE)	ND	0.50	ug/L						04/07/21	
oluene	ND	0.50	ug/L						04/07/21	
rans-1,2-Dichloroethene	ND	0.50	ug/L						04/07/21	
rans-1,3-Dichloropropene	ND	0.50	ug/L						04/07/21	
richloroethene (TCE)	ND	0.50	ug/L						04/07/21	
richlorofluoromethane	ND	5.0	ug/L						04/07/21	
/inyl Chloride	ND	0.50	ug/L						04/07/21	
otal 1,3-Dichloropropene	ND	0.50	ug/L						04/07/21	
otal Xylenes	ND	0.50	ug/L						04/07/21	
Surrogate: 1,2-Dichlorobenzene-d4	58		Ü	50		117	70-130		04/07/21	
Surrogate: Bromofluorobenzene	56			50		112	70-130		04/07/21	
Blank Spike (AED0360-BS1)										
,1,1-Trichloroethane	11	0.50	ug/L	10	ND	112	70-130		04/07/21	
,1,2,2-Tetrachloroethane	11	0.50	ug/L	10	ND	112	70-130		04/07/21	
,1,2-Trichloro-1,2,2-trifluoroethane	11	10	ug/L	10	ND	112	70-130		04/07/21	
,1,2-Trichloroethane	10	0.50	ug/L	10	ND	104	70-130		04/07/21	
,1-Dichloroethane	11	0.50	ug/L	10	ND	108	70-130		04/07/21	
,1-Dichloroethene	11	0.50	ug/L	10	ND	110	70-130		04/07/21	
,2,4-Trichlorobenzene	10	0.50	ug/L	10	ND	100	70-130		04/07/21	
,2-Dichlorobenzene	11	0.50	ug/L	10	ND	114	70-130		04/07/21	
,2-Dichloroethane	11	0.50	ug/L	10	ND	106	70-130		04/07/21	
,2-Dichloropropane	10	0.50	ug/L	10	ND	105	70-130		04/07/21	
,4-Dichlorobenzene	11	0.50	ug/L	10	ND	110	70-130		04/07/21	
Benzene	11	0.50	ug/L	10	ND	106	70-130		04/07/21	
Carbon Tetrachloride	10	0.50	ug/L	10	ND	105	70-130		04/07/21	
Chlorobenzene	10	0.50	ug/L	10	ND	104	70-130		04/07/21	
sis-1,2-Dichloroethene	11	0.50	ug/L ug/L	10	ND	109	70-130		04/07/21	
sis-1,3-Dichloropropene	10	0.50	ug/L ug/L	10	ND	109	70-130		04/07/21	
Dichloromethane	11	0.50	ug/L ug/L	10	ND	110	70-130		04/07/21	
Ethylbenzene	10	0.50	ug/L ug/L	10	ND	101	70-130		04/07/21	
n,p-Xylenes	22	0.50	ug/L ug/L	20	ND	110	70-130		04/07/21	
				20	ND		70-130			
/lethyl-t-butyl ether	20	0.50	ug/L			100			04/07/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Organics Quality Control Poport

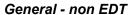
	0	rganics C	Quality	Contro	l Report						
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 52	24.2 - Qı	uality Co	ntrol						
Batch: AED0360 Prep Method: EPA 524.2											ed: 4/7/2021 nalyst: ANM
Blank Spike (AED0360-BS1)											
Styrene	11	0.50	ug/L	10	ND	109	70-130			04/07/21	
Tetrachloroethene (PCE)	11	0.50	ug/L	10	ND	108	70-130			04/07/21	
Toluene	11	0.50	ug/L	10	ND	105	70-130			04/07/21	
trans-1,2-Dichloroethene	11	0.50	ug/L	10	ND	108	70-130			04/07/21	
trans-1,3-Dichloropropene	11	0.50	ug/L	10	ND	105	70-130			04/07/21	
Trichloroethene (TCE)	11	0.50	ug/L	10	ND	108	70-130			04/07/21	
Trichlorofluoromethane	11	5.0	ug/L	10	ND	110	70-130			04/07/21	
Vinyl Chloride	11	0.50	ug/L	10	ND	112	70-130			04/07/21	
Surrogate: 1,2-Dichlorobenzene-d4	55		· ·	50		110	70-130			04/07/21	
Surrogate: Bromofluorobenzene	53			50		105	70-130			04/07/21	
Blank Spike Dup (AED0360-BSD1)											
1,1,1-Trichloroethane	10	0.50	ug/L	10	ND	102	70-130	9	30	04/07/21	
1,1,2,2-Tetrachloroethane	11	0.50	ug/L	10	ND	107	70-130	5	30	04/07/21	
1,1,2-Trichloro-1,2,2-trifluoroethane	10	10	ug/L	10	ND	104	70-130	8	30	04/07/21	
1,1,2-Trichloroethane	10	0.50	ug/L	10	ND	102	70-130	2	30	04/07/21	
1,1-Dichloroethane	10	0.50	ug/L	10	ND	101	70-130	6	30	04/07/21	
1,1-Dichloroethene	10	0.50	ug/L	10	ND	101	70-130	8	30	04/07/21	
1,2,4-Trichlorobenzene	9.7	0.50	ug/L	10	ND	97	70-130	4	30	04/07/21	
1,2-Dichlorobenzene	11	0.50	ug/L	10	ND	109	70-130	4	30	04/07/21	
1,2-Dichloroethane	10	0.50	ug/L	10	ND	102	70-130	4	30	04/07/21	
1,2-Dichloropropane	10	0.50	ug/L	10	ND	100	70-130	5	30	04/07/21	
1,4-Dichlorobenzene	10	0.50	ug/L	10	ND	105	70-130	5	30	04/07/21	
Benzene	10	0.50	ug/L	10	ND	101	70-130	6	30	04/07/21	
Carbon Tetrachloride	9.6	0.50	ug/L	10	ND	96	70-130	9	30	04/07/21	
Chlorobenzene	9.9	0.50	ug/L	10	ND	99	70-130	5	30	04/07/21	
cis-1,2-Dichloroethene	10	0.50	ug/L	10	ND	100	70-130	8	30	04/07/21	
cis-1,3-Dichloropropene	10	0.50	ug/L	10	ND	102	70-130	2	30	04/07/21	
Dichloromethane	10	0.50	ug/L	10	ND	104	70-130	5	30	04/07/21	
Ethylbenzene	9.6	0.50	ug/L	10	ND	96	70-130	5	30	04/07/21	
m,p-Xylenes	21	0.50	ug/L	20	ND	104	70-130	5	30	04/07/21	
Methyl-t-butyl ether	20	0.50	ug/L	20	ND	98	70-130	3	30	04/07/21	
o-Xylene	9.9	0.50	ug/L	10	ND	99	70-130	5	30	04/07/21	
Styrene	10	0.50	ug/L	10	ND	104	70-130	4	30	04/07/21	
Tetrachloroethene (PCE)	9.9	0.50	ug/L	10	ND	99	70-130	9	30	04/07/21	
Toluene	9.9	0.50	ug/L	10	ND	99	70-130	7	30	04/07/21	
trans-1,2-Dichloroethene	10	0.50	ug/L	10	ND	101	70-130	7	30	04/07/21	
trans-1,3-Dichloropropene	10	0.50	ug/L	10	ND	102	70-130	3	30	04/07/21	
Trichloroethene (TCE)	10	0.50	ug/L ug/L	10	ND	102	70-130	7	30	04/07/21	
Trichlorofluoromethane	10	5.0	ug/L ug/L	10	ND	102	70-130	8	30	04/07/21	
Vinyl Chloride	10	0.50	ug/L ug/L	10	ND	102	70-130	9	30	04/07/21	
Surrogate: 1,2-Dichlorobenzene-d4	5 <i>4</i>	0.50	ug/L	50	110	102	70-130	9	50	04/07/21	
Surrogate: Bromofluorobenzene	52			50		104	70-130			04/07/21	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno Organics Quality Control Report

ND N	1.0 0.50 0.80 0.50 1.0 0.90 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	Level uality Co	Result	%REC	Limits	RPD	Limit	Analyzed Qual Prepared: 4/9/20 Analyst: Jl 04/10/21 04/10/21
ND ND ND ND ND	1.0 0.50 0.80 0.50 1.0 0.90	ug/L ug/L ug/L ug/L ug/L ug/L	uality Co	ntrol					Analyst: JI 04/10/21
ND ND ND ND ND	0.50 0.80 0.50 1.0 0.90	ug/L ug/L ug/L ug/L ug/L							Analyst: JI 04/10/21
ND ND ND ND ND	0.50 0.80 0.50 1.0 0.90	ug/L ug/L ug/L ug/L ug/L							04/10/21
ND ND ND ND ND	0.50 0.80 0.50 1.0 0.90	ug/L ug/L ug/L ug/L ug/L							
ND ND ND ND ND	0.50 0.80 0.50 1.0 0.90	ug/L ug/L ug/L ug/L ug/L							
ND ND ND ND	0.80 0.50 1.0 0.90 1.0	ug/L ug/L ug/L ug/L ug/L							04/10/21
ND ND ND ND	0.50 1.0 0.90 1.0	ug/L ug/L ug/L ug/L							
ND ND ND	1.0 0.90 1.0	ug/L ug/L ug/L							04/10/21
ND ND	0.90 1.0	ug/L ug/L ug/L							04/10/21
ND	1.0	ug/L ug/L							04/10/21
		ug/L							04/10/21
ND	1.0	-							04/10/21
		ug/L							04/10/21
3.9	1.0	ug/L	4.0	ND	97	80-120			04/10/21
1.9	0.50	ug/L	2.0	ND	96	80-120			04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
3.9	1.0	ug/L	4.0	ND	97	80-120			04/10/21
3.9	1.0	ua/L	4.0	ND	98	80-120	1	20	04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
		-							04/10/21
3.9	1.0	ug/L	4.0	ND	98	80-120	2	20	04/10/21
EC0514-02									
4.0	1.0	ug/L	4.0	ND	99	65-135			04/10/21
2.0	0.50		2.0	ND	99	65-135			04/10/21
	0.80	-		ND	100	65-135			04/10/21
		-							04/10/21
		•							04/10/21
		-							04/10/21
		•							04/10/21
		-							04/10/21
0.0					30	00-100			04/10/21
	EPA 54	ا8.1 - Q≀	uality Co	ntrol					Prepared: 4/7/20
									Analyst: J
ND	45	ug/L							04/08/21
	3.9 1.9 3.2 2.0 4.0 3.5 4.0 3.9 EC0514-02 4.0 2.0 3.2 2.0 4.0 3.6 4.1 3.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0


Page 20 of 38

BSK Associates Laboratory Fresno

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		EPA 54	18.1 - Q	uality Co	ntrol					
atch: AED0411										Prepared: 4/7/20
rep Method: EPA 548.1										Analyst: Jł
lank Spike (AED0411-BS1)										
ndothall	20	45	ug/L	20	ND	102	39-122			04/08/21
lank Spike Dup (AED0411-BSD1)										
ndothall	22	45	ug/L	20	ND	109	39-122	7	30	04/08/21
atrix Snika (AEDO411 MS1) Saurca: Al	ED0676 01									
l atrix Spike (AED0411-MS1), Source: Al ndothall	8.2	45	ug/L	20	ND	41	39-122			04/08/21
			3							
latrix Spike (AED0411-MS2), Source: Si ndothall	E D0058-01 ND	45	ug/L	20	ND	0	39-122			04/08/21 MS1.0 Lo
Idottiaii	ND					O	39-122			04/00/21 W31.0 L0
		EPA 54	19.2 - Q	uality Co	ntrol					
atch: AED0415 rep Method: EPA 549.2										Prepared: 4/8/20 Analyst: Zi
lank (AED0415-BLK1)										
iquat	ND	4.0	ug/L							04/14/21
Levil Oville (AEDOME DOM)										
lank Spike (AED0415-BS1) quat	3.6	4.0	ug/L	4.0	ND	89	70-130			04/14/21
quat	0.0	1.0	ug/L	1.0	110	00	70 100			0 1/1 1/21
lank Spike Dup (AED0415-BSD1)	0.4	4.0		4.0	ND	0.5	70.400	_	00	0.4/4.4/0.4
iquat	3.4	4.0	ug/L	4.0	ND	85	70-130	5	30	04/14/21
atrix Spike (AED0415-MS1), Source: Al	ED0661-01									
iquat	3.3	4.0	ug/L	4.0	ND	83	70-130			04/14/21
atrix Spike (AED0415-MS2), Source: Al	ED0661-02									
iquat	3.6	4.0	ug/L	4.0	ND	90	70-130			04/14/21
		SRL 524	И-ТСР -	Quality (Control					
Batch: AED0399 Prep Method: no prep-volatiles				,						Prepared: 4/7/20: Analyst: JN
Tep Method: no prep-volumes										Allalyst. Jiv
lank (AED0399-BLK1)	N.E.	0.00=1								0.4.10.0.10.1
2,3-Trichloropropane	ND	0.0050	ug/L							04/08/21
lank Spike (AED0399-BS1)										
2,3-Trichloropropane	0.0047	0.0050	ug/L	0.0050	ND	94	80-120			04/08/21
ank Spike Dup (AED0399-BSD1)										
2,3-Trichloropropane	0.0045	0.0050	ug/L	0.0050	ND	91	80-120	3	30	04/08/21
uplicate (AED0399-DUP1), Source: AEI	00650-01									
2,3-Trichloropropane	ND	0.0050	ug/L		ND				20	04/08/21
			-							
e results in this report apply to the samples a cordance with the chain of custody document								5	SED005	7 FINAL 04212021 143
ordance with the chain of custody document plytical report must be reproduced in its entire										Page 21 of 1

BSK Associates Sacramento General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		SM 21	20B - Qu	ality Co	ntrol					
Batch: SED0015										Prepared: 4/7/202
Prep Method: Method Specific Preparation	on									Analyst: KE
Blank (SED0015-BLK1)										
Color, Apparent	ND	5.0	CU							04/07/21
Duplicate (SED0015-DUP1), Source: SED	0040-01									
Color, Apparent	ND	5.0	CU		ND				20	04/07/21
Duplicate (SED0015-DUP2), Source: SED	0040-11									
Color, Apparent	ND	5.0	CU		ND				20	04/07/21
		SM 21	30B - Qu	ality Co	ntrol					
Batch: SED0015										Prepared: 4/7/202
Prep Method: Method Specific Preparation	on									Analyst: KE
Blank (SED0015-BLK1)										
Turbidity	ND	0.10	NTU							04/07/21
Duplicate (SED0015-DUP1), Source: SED	0040-01									
Turbidity	ND	0.10	NTU		ND				20	04/07/21
		SM 21	50B - Qu	ality Co	ntrol					
Batch: SED0011										Prepared: 4/6/202
Prep Method: Method Specific Preparation	on									Analyst: KEI
Blank (SED0011-BLK1)										
Threshold Odor	ND	1.0	T.O.N.							04/06/21
Blank (SED0011-BLK2)										
Threshold Odor	ND	1.0	T.O.N.							04/06/21
		SM 4500)-H+ B - (Quality (Control					
Batch: SED0016										Prepared: 4/7/202
Prep Method: Method Specific Preparation	on									Analyst: KE
Duplicate (SED0016-DUP1), Source: SED	0045-01									
pH (1)	7.6	0.0	pH Units		7.6			0	20	04/07/21
pH Temperature in °C	16.9	0.0	pH Units		17.4			3		04/07/21

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- · Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- · (2) Formerly known as Bis(2-Chloroisopropyl) ether.

Definitions

Milligrams/Liter (ppm) mg/L: MDL: Method Detection Limit MDA95: Min. Detected Activity mg/Kg: Milligrams/Kilogram (ppm) RL: Reporting Limit: DL x Dilution MPN: Most Probable Number Micrograms/Liter (ppb) ND: None Detected below MRL/MDL CFU: Colony Forming Unit μg/L: Micrograms/Kilogram (ppb) pCi/L: PicoCuries per Liter Absent: Less than 1 CFU/100mLs μg/Kg: 1 or more CFU/100mLs Percent RL Mult: RI Multiplier Present: %: NR: Non-Reportable Maximum Contaminant Limit MCL: The analyte was not detected at or

above the reported sample quantitation

limit.

Please see the individual Subcontract Lab's report for applicable certifications.

Aggressive Index Langelier Index Color, Apparent pH (1) pH Temperature in °C Turbidity

1.2,3-Trichloropropane

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

State of California - ELAP	1180	State of Hawaii	4021
Los Angeles CSD	9254479	NELAP certified	4021-017
State of Nevada	CA000792020-2	State of Oregon - NELAP	4021-017
EPA - UCMR4	CA00079	State of Washington	C997-21

Sacramento

State of California - ELAP 2435

San Bernardino

State of California - ELAP2993Los Angeles CSD9254478NELAP certified4119-005State of Oregon - NELAP4119-005

Vancouver

NELAP certified WA100008-013 State of Oregon - NELAP WA100008-013

State of Washington C824-20

1414 Stanislaus St., Fresno, CA 93706 (559) 497-2888 · Fax (559) 497-2893

Turnaround Time Request

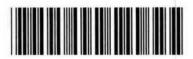
Standard - 10 business days

4/06/202	10
0 2	
SED0057Meyer8967	
D0057N	

1	as.com					~			+	+					/ Cash		i's current Standard Terms and Conditions for Laboratory Services. The person signing for oratory services unless contractually bound otherwise. BSK's current terms and conditions
	® pjcanv			90	EPA 50	×							Ų	366	Sk Tig		ervices. The pe
	Fax: om; jay@	'əuiz	, Atraz	.ənizsmi2 - 20)S A93								Company	Company	Che		r Laboratory S. otherwise, BSF
	gmail.cc	,155	EPA (15, EPA 504, I	.S A9∃	X		H		+		+	8		PIA#:		d Conditions fo
	967 ullner@		F	24 - Regulateo		X		\Box					ARVI			Dan O	idard Terms an
	-320-89 -mattfu					×							2	N	Amount	Seal: Y / N	ed in BSK's current Standa his for faboratory services to
	Phone 707		L.		Title 2	×			\perp				1	© .4	1.	Custody Chilling F	ecified in BSK ditions for labo
	ompany	Zip*: 94559	your completed results	ompliance RCB (Drinking Wate	olid Code / WTRAX								3	Chand Printed Name	d at Delivery.	MA	charges and interest sp to BSK's terms and con
20	ce ro⁺: yers Water Co	State*: CA	w would you like to receive	Regulatory C EDT to California SW System Number*: Geotracker #;	orinking Water SO=S								Red	Received by Signs	Payment Receive		subject to monthly service ain of Custody, and agrees
2.5.70	Me.				DW=					+					9	25.C (Single)	elinquent barances are he services on this Ch
Temp:				ry Carbon Copies	water STW=St	7:48 pm							Ö	ă		FED EX	deemed demquent. or slble for payment for I
	tention*: tw J. Fullne cc's: ardner	y⁺: Iapa		Regulato SWRCB (Dri Merced Co Madera Co	/ater ww=waste	4.5.2							IMC	WWC WWC	7	K-IN	account parameter are d agrees to be respon
	Report Att Matthe	5 2	Pro	et mot	GW=Ground W	(0)								Com	,	WAL	Hent, that the Clien
red Fields				215/20	v=Bottled Water	20M	2	0					+ Fully	SEX.		GSO GSO GSO GSO GSO	orized agent to the (
*Redu				TO TO	rface Water BW ple Descrip	BUNOT	32100	32102					Most	(5 AR)	Morel	None None in full within 30 day	the Client or an auth
	r Company	load	EDT	Swamp ted/Signature)*:	atrix Types: SW=St	2	2 1 2	37600					re-and Printed Name)	re and Presed Name	127cm	Wet Registered as noted herein are due	odges that they are ofther
100	ompany/Cilent Na leyers Water	Address*: 1830 Milton R	Project: General - non	Reporting Options: Trace (J-Flag) Sampler Name (Print	#	Well 003 -	5 85) <u> </u>					dishet by Signatu		3	Shipping Method: Cooling Method:	lent/Company acknowle
	Required Fields	Client Name: Report Attention*: Temp: 5.7.7.0	Required Fields Temp: 5.7.7 (3.0) Phone*: Matthew J. Fullner Meyers Water Company 707-320-8967 Additional ccts: Poet State*: Zip*: E-mail*: mattfullner@gmail.com; CA 94559 CA 94559	Report Attention*: Temp: S · U · U · O · O · O · O · O · O · O · O	Report Attention: Invoice To: Matthew J. Fullner Meyers Water Company	Report Attention: Invoice To: Mayers Water Company	Required Fields Report Attention: Invoice To: Invoice To: Invoice To: Matthew J. Fulliner Pode: Pode: Project #: CA 94559	Required fields Report Attention*: Temp: 5.0 T.S.0 Matthew J. Fullner Invoice To: Jay Gardiner Additional cris: Jay Gardiner State*: Zip: CA Additional cris: Cathy: CA Additional cris: Cathy: CA Additional cris: Cathy: CA Additional cris: Cathy: CA Additional cris: CA Additional cris:	Required Fields Report Attention: Temp: 5 · C C \ 0 \ 0 \	Required Fields Report Attention** Temp. S. C. T. O. O.	Required Fields Report Attention": Temp: 5 · C C \	Required Fields Project #1	Regulatory Carbon Copies Paguatory Water Company Post	Report Attention* Temps: S.C. Company	Required Fields Report Attention* Tengs. 5.1. Project First	Second Company Compa	Application Company Company

Sample Integrity BSK Bottles: Yes No Page L of

SED0057Meyer8967 04/06/2021


	Page	, or ,	-	The state of the s				
	Was temperature within range? Chemistry ≤ 6°C Micro < 8°C	YES NO NA	Were	correct conta	iners and pr	eservatives	1	No.
9	If samples were taken today, is there evidence	1	receiv	ved for the tes	ts requested	d?	E	No NA
COC Info	that chilling has begun?	NO NA	TB R	les Present V	OAs (524.2/	TTHM)?	Yes	No NA
8	Did all bottles arrive unbroken and intact?	No.	TB Received? (Check Method Below) Was a sufficient amount of sample received					No No
Ö	Did all bottle labels agree with COC?	YES NO	Do sa	imples have a	d? Ye	No		
	Was sodium thiosulfate added to CN sample(s) until chlorine was no longer present?	Yes No NA		PM notified of	discrepanci By/Time:	es?	Yes No WA	
	250ml(A) 500ml(B) 1Liter(C) 40mlVOA(V) 125ml(D)	Checks*	Passed?	the	#2	#3	Ha	T
	Bacti Na ₂ S ₂ O ₃	_ =	_			100	#4	100 m of 190
	None (P)White Cap	_	-	10 44				
	Cr6 (P) Lt. Green Label/Blue Cap NH40H(NH4)2SO4 DW	Cl, pH > 8	PF	IA, 3C				
da	Cr6 (P) Pink Label/Blue Cap NH40H(NH4)2SO4 WW	pH 9.3-9.7	PF					
in the	Cr6 (P) Black Label/Blue Cap NH4OH(NH4)2SO4 7199	pH 9.0-9.5	P F					
performed	HNO3 (P) ed Cap or HCI (P) Purple Cap/Lt Blue Label	_		13,30				
srfor	H ₂ SO ₄ (P) or (AG) Yellow Cap/Label	pH < 2	PF	17			-	
	NaOH (P) Green Cap	CI, pH >10	PF					
or are	NaOH + ZnAc (P)	pH > 9	PF				7.0	
N/A	Dissolved Oxygen 300ml (g)		_				2	
	None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270		_	1/2		-		ta note
Bottles Received	HCI (AG)Lt. Blue Label O&G, Diesel, TCP	_	_	1B 3U				2
are	Ascorbic, EDTA, KH2Ct (AG)Pink Label 525			- OV			SILAR	v = man
s R	Na ₂ SO ₃ 250mL (AG)Neon Green Label 515	_		IA				P. C. DE
che	Na ₂ S ₂ O ₃ 1 Liter (Brown P) 549	N =	_ 0v	DI Krub				
Bol	Na ₂ S ₂ O ₃ (AG) ^{Blue Label} 548, THM, 524		\ <u>u</u>	(A (A) (C				-
cho	Na ₂ S ₂ O ₃ (CG) ^{Blue} Label 504, 505, 547		103	14 7K PA	9.00		-	
Bo preservation/chlorin	Na ₂ S ₂ O ₃ + MCAA (CG) ^{Orange Label} 531	pH < 3	P F	11	2VTB			
sval	NH ₄ CI (AG) ^{Purple Label} 552	priva		1.7				
rese	EDA (P) or (AG) Brown Label DBPs			+				
d SL	HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624							
Jear	Buffer pH 4 (CG)			30		2413		18-4
	H ₃ PO ₄ (CG)Salmon Label							
1	Trizma – EPA 537.1 - Field Blank Required						3 / 1	
	Other:			-	F - 5 (D)			
	Asbestos 1L (P) w/ Foil / LL Metals Bottle		_	1,				
	Bottled Water		12	la	77 - 77 - 77	177.7	10 7015	Eliment .
	Clear Glass 125mL / 250mL / 500mL / 1 Liter	_	_					
	Solids: Brass / Steel / Plastic Bag	white ment		13.51	P. C. 34		2007	CAMP TO
=		Time/Initials		Containe	Prese	rvative	Date/Time	e/Initials
10	S P	5	S P					
	S P	5	S P					
	*Preservation check completed by lab performing	ng analysis.	1	ndicates Bl	anks Rece	ived		***************************************
Comments		ş		524.2				

SAMPLE TRANSIT ORDER

SED0057

Michelle Croft

Receipt temp @ FAL: 0.0,17.7

Thermometer/ IR Gun ID: #17

SENDING LABORATORY:

BSK Associates Sacramento 3140 Gold Camp Drive #160 Rancho Cordova, CA 95670 916.853.9293 (Main) 916.853.9297 (FAX)

Project Manager: Michelle Croft

E-mail:

mcroft@bskassociates.com

RECEIVING LABORATORY:

BSK Associates Laboratory Fresno 1414 Stanislaus St Fresno, CA 93706 559-497-2888 (Main) 559-485-6935 (FAX)

Turnaround (Days): Standard QC Deliverables: | Std | III | IV

Client: Meyers Water Company

Sample ID Samp Desc Sample Date

SED0057-01 Well 003 - Zone 2 (Lower Zone)

Client Matrix Water

04/05/2021 19:40

Lab Matrix: Water

Analysis:

Aggressive Index Alkalinity as CaCO3 Aluminum, CA DW ICP Antimony, CA DW ICPMS Arsenic, CA DW ICPMS Barium, CA DW ICP Beryllium, CA DW ICPMS Cadmium, CA DW ICPMS Calcium, CA DW ICP

Chloride

Chromium, CA DW ICPMS Copper, CA DW ICPMS

Cyanide, Total EC, Conductivity

EPA 504.1 - (EDB/DBCP)

EPA 505 - Organohalide Pesticide & PCBs

EPA 515.4 - Caltox

EPA 524.2 - Regulated Compounds - Subtest

EPA 531.1 - Caltox

EPA 548.1 - Caltox

EPA 549.2 - Caltox

Fluoride, Drinking Water

Iron, CA DW ICP

Langelier Index

Lead, CA DW ICPMS

Magnesium, CA DW ICP

Manganese, CA DW ICP

MBAS

Mercury, CA DW ICPMS

Nickel, CA DW ICPMS

Nitrate + Nitrite as N, IC

Nitrate-N

Nitrite

Perchlorate

Potassium, CA DW ICP

SR-FL-0052-00

Page 27 of 38

Released By

Date
Released By

Date
Received By

Date

Received By

Date

SR-FL-0052-00

Page 29 of 38

SAMPLE TRANSIT INTEGRITY

PM: Michelle Croft

SED0057 04/06/2021

Meyer8967 10 BSK Bottles: No Page of Yes) Was temperature within range? Were correct containers and preservatives received for the Yes No NA No Chemistry ≤ 6°C Micro< 8°C tests requested? COC Info Bubbles Present VOAs (524.2/TCP/TTHM)? Yes No NA Yes No Did all bottles arrive unbroken and intact? Yes No (cs) No Was a sufficient amount of sample received? TB Received? (Check Method Below) Yes No NA Do samples have a hold time <72 hours? (Yes) No Was PM notified of discrepancies? Was sodium thiosulfate added to CN sample(s) until PM: Yes No (NA By/Time: chlorine was no longer present? 2 4 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) 3 Checks Passed? Bacti Na2S2O3 3 C/A None (P) White Cap lab Cl, pH> 8 Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)SO4 DW P performed in the Cr6 (P) Pink Label/Blue Cap NH4OH(NH4)SO4 WW pH 9.3 - 9.7 P F Cr6 (P) Black Label/Blue Cap NH40H(NH4)SO4 7199 pH 9.0 - 9.5 PF ***24 HOUR HOLD TIME*** 13 HNO3 (P) Red Cap or HCl (P) Purple Cap/Lt. Blue Label pH < 2 P F H2SO4 (P) or (AG) Yellow Cap/Label are Cl, pH> 10 P F NaOH (P) Green Cap pH > 9P F NaOH + ZnAc (P) preservation/chlorine checks are either N/A or Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 ZN 80 **Bottles Received** HCl (AG) Lt. Blue Label O&G, Diesel, TCP Ascorbic, EDTA, KH2Ct (AG) Pink Label 525 1A Na2SO3 250ml (AG) Neon Green Label 515 16 Na2S2O3 1 Liter (Brown P) 549 1A, 300 Na2S2O3 (AG) Blue Label 548, THM, 524 w Na2S2O3 (CG) Blue Label 504, 505, 547 10 Na2S2O3 + MCAA (CG) Orange Label 531 pH < 3(P) F NH4Cl (AG) Purple Label 552 EDA (AG) Brown Label DBPs 20 3~ HCL (CG) 524.2, BTEX, Gas, MTBE, 8260/624 Buffer pH 4 (CG) H3PO4 (CG) Salmon Label 250mL P / Trizma 531.1 --means Other: Asbestos 1L(P) w/Foil / LL Metals Bottle Bottled Water Clear Glass 250ml / 500ml / 1 Liter ---Solids: Brass / Steel / Plastic Bag Date/Time/Initials Container Preservative Date/Time/Initials Container Preservative Split SP S P S P SP ✓ Indicates Blanks Received

Сошш		TTHM5378260/624_	
Labels Checked by:	Scanned by:	RUSH Paged by: Page 30) of 38

April 16, 2021

Lab ID **BSK Associates Engineers & Laboratories** : SP 2104723 1414 Stanislaus St. Customer : 2-22939

Fresno, CA 93706

Laboratory Report

Introduction: This report package contains total of 3 pages divided into 3 sections:

Case Narrative (1 pages): An overview of the work performed at FGL.

Sample Results (1 page): Results for each sample submitted.

Quality Control (1 page): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
Well 003-Zone 2 (Lower Zone)	04/05/2021	04/08/2021	SP 2104723-001	W

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at room temperature. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

900.0	04/14/2021:205463 All analysis quality controls are within established criteria
	04/09/2021:203813 All preparation quality controls are within established criteria (performed at FGL-SP ELAP# 1573)

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:MKH

Reviewed and Approved By Kelly A. Dunnahoo, B.S. Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director Date: 2021-404-16

Page 31 of 38

April 16, 2021 Lab ID : SP 2104723-001

> Customer ID : 2-22939

BSK Associates Engineers & Laboratories

1414 Stanislaus St. Sampled On : April 5, 2021-19:40 Fresno, CA 93706 Sampled By : Not Available

Received On : April 8, 2021-09:00

: Water Matrix

Description : Well 003-Zone 2 (Lower Zone)

Project : SED0057

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis	
Constituent	Result ± Elloi	WIDA	Omts	WICLIAL	Method	Date/ID	Method	Date/ID
Radio Chemistry								
Gross Alpha	3.32 ± 1.54	1.82	pCi/L	15/5	900.0	04/09/21-08:20 2P2103813	900.0	04/14/21-14:15 2A2105463

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Page 32 of 38 CA ELAP Certification No. 2810 April 16, 2021 Lab ID : SP 2104723 **BSK Associates Engineers & Laboratories** Customer : 2-22939

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	04/14/21:205463JCA	CCV	cpm	7778	40.7 %	35-47	
				CCB	cpm		0.0800	0.17	
Gross Alpha		900.0	04/09/21:203813jca	Blank	pCi/L		0.34	3	
				LCS	pCi/L	201.1	87.1 %	75-125	
				MS	pCi/L	201.1	112 %	60-140	
			(CH 2172275-001)	MSD	pCi/L	201.1	112 %	60-140	
				MSRPD	pCi/L	201.1	0.3%	≤30	
Definition		-							
CCV	: Continuing Cali	bration Verifica	tion - Analyzed to verif	y the instru	ment calibration	on is within	criteria.		
CCB	: Continuing Cali	bration Blank -	Analyzed to verify the	instrument b	aseline is witl	hin criteria.			
Blank		1	ify that the preparation	1	,	_			
LCS			mple - Prepared to veri						
MS			le is spiked with a know	vn amount c	of analyte. The	e recoveries	are an indicatio	on of how tha	at sample
1115	matrix affects ana								
MSD		1	MSD pair - A random s	1 1		with a know	n amount of ar	nalyte. The re	ecoveries
are an indication of how that sample matrix affects analyte recovery.									
MSRPD		ve Percent Diff	erence (RPD) - The MS	relative per	cent differenc	e is an indic	ation of precis	ion for the p	reparation
	and analysis.					_			
DQO	: Data Quality Ob	jective - This is	the criteria against wh	ich the quali	ty control data	a is compare	d.		

SUBCONTRACT ORDER SED0057

ZIUM3

SENDING LABORATORY:

BSK Associates Sacramento 3140 Gold Camp Drive #160 Rancho Cordova, CA 95670 Phone: 916-853-9293

Phone: 916-853-92 Fax: 916.853.9297

RECEIVING LABORATORY:

FGL Environmental P.O. Box 272 / 853 Corporation Santa Paula, CA 93060 Phone :(805) 392-2000 Fax: (805) 525-4172

Sample ID	Samp Desc		Comments	Sample Date
SED0057-01 Lab Matrix:	Well 003 - Zone 2 (Lo Water	wer Zone)	Client Matrix Water	04/05/2021 19:40
	Analysis:		_	
	EXT-Gross Alpha		Shipped by BSK- Sac, 4/6/2021	

Date

18-1

Released By Alama Alama aw

Released By

Received By

Received B

PNA A

Date

Subject: RE: SED0057 From: Michelle Croft <mcroft@bskassociates.com> Date: 4/8/2021, 3:22 PM To: Inez Covarrubias <inezc@fglinc.com> Good evening Inez, This site does not have a current PS Code, EDT is not requested at this time Thank you! Michelle (Kawaguchi) Croft BSK Fresno Analytical Project Manager (559)-497-2888 ext. 138 From: Inez Covarrubias <inezc@fglinc.com> Sent: Thursday, April 8, 2021 11:01 AM To: Michelle Croft <mcroft@bskassociates.com> Subject: SED0057 Good Morning Michelle, Does this project need state EDT reporting? If so please provide system #. Thank you, Inez Covarrubias

FGL Environmental Doc ID: 2D0900157_SOP_17.DOC

Revision Date: 10/09/14 Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:								
1. Number of ice chests/packages	received:	1						
2. Shipper tracking numbers	552878845							
Were samples received in a chill Temps:	ed condition?	RRT	1	/	/	/	/	/
Surface water (SWTR) bact sam should be flagged unless the tim	•		•	-	•		whether id	ced or not,
5. Do the number of bottles receive COC?	ed agree with the	Yes] No	N/A				
6. Verify sample date, time, sample	er	Yes	No	N/A				
Were the samples received intac bottles, leaks, etc.)	ct? (i.e. no broker	Yes] No					
8. Were sample custody seals intac	ct?	Yes	No	N/A]			
Sample Verification, Labeling an	d Distribution:		_					
1. Were all requested analyses und acceptable?	derstood and	Yes	No					
Did bottle labels correspond with	the client's ID's?	Yes] No					
3. Were all bottles requiring sample properly preserved? [Exception: Oil & Grease, VOA a	•	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?		Yes	No	N/A				
5. Were all analyses within holding receipt?	times at time of	Yes	No					
6. Have rush or project due dates baccepted?	een checked and	Yes] No	N/A				
Include a copy of the COC for lab o	lelivery. (Bacti. In	organics	and Rac	dio)				
Sample Receipt, Login and Verifica		-	Review	od ond	Inez Cova	arrubias	Title: Sam	gned by Inez Covarrubias ple Receiving 19/2021-08:24:46
Discrepency Documentation: Any items above which are "No" or	do not meet spe	cifications	s (i.e. ter	mps) mu	ıst be resc	olved.		
Person Contacted:		PI	hone Nu	ımber:				
Initiated By:		Da	ate:	-				
Problem:								
Resolution:								
2. Person Contacted:		PI	hone Nu	ımber:				
		_	ate:	-				
Problem:		_		•				
Resolution:						(000	2020)	
					-	•	2939) 2001:eta	
						3SK As	sociate	es

SP 2104723 IV-04/09/2021-08:24:46

LA Testing

520 Mission Street South Pasadena, CA 91030 Phone/Fax: (323) 254-9960 / (323) 254-9982 http://www.LATesting.com / pasadenalab@latesting.com

LA Testing Order ID: 322106539 Customer ID: 32BSK50

Customer PO: Project ID:

Attn: Michelle Croft

BSK Analytical Laboratories

1414 Stanislaus Street Fresno, CA 93706 Phone:

(559) 497-2888

Fax:

Received: Analyzed:

04/07/2021 04/12/2021

Proj: SED0057

322106539-0001

Test Report: Determination of Asbestos Structures >10µm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

ASBESTOS

Sample ID Client / EMSL	Sample Filtration Date/Time	Original Sample Vol. Filtered	Effective Filter Area	Area Analyzed	Asbestos Types	Fibers Detected	Analytical Sensitivity	Concentration	Confidence Limits
		(ml)	(mm²)	(mm²)			MFL	(million fibers per l	iter)
SED0057-01	4/7/2021	100	1288	0.0640	None Detected	ND	0.20	<0.20	0.00 - 0.74

Collection Date/Time: 04/05/2021 19:40 PM

10:25 AM

Analyst(s)
Kyeong Corbin (1)

Jerry Drapala Ph.D, Laboratory Manager or Other Approved Signatory

Any questions please contact Jerry Drapala.

Initial report from: 04/16/2021 07:35:06

LA Testing maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by LA Testing. LA Testing bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available on request. Sample collection and containers provided by the client, acceptable bottle blank level is defined as ≤0.01MFL>10um. ND=None Detected. No Fibers Detected: the value will be reported as less than 369% of the concentration equivalent to one fiber. 1 to 4 fibers: The result will be reported as less than the corresponding upper 95% confidence limit (Poisson),5 to 30 fibers: Mean and 95% confidence intervals will be reported on the basis of the Poisson assumption. When more than 30 fibers are counted, both the Gaussian 95% confidence interval and the Poisson 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting, When the Gaussian 95% confidence interval is selected for data reporting, the Poisson will also be noted.

Samples analyzed by LA Testing South Pasadena, CA CA ELAP 2283

SUBCONTRACT ORDER

SED0057

#322106539

SENDING LABORATORY:

BSK Associates Sacramento 3140 Gold Camp Drive #160 Rancho Cordova, CA 95670

Phone: 916-853-9293 Fax: 916.853.9297

Project Manager: Michelle Croft

E-mail: mcroft@bskassociates.com

RECEIVING LABORATORY:

L A Testing 520 Mission St. South Pasadena, CA 91030 Phone :(800) 303-0047 Fax: (323) 254-9982 Turnaround (Days): Standard QC Deliverables: | Std | || || || || ||

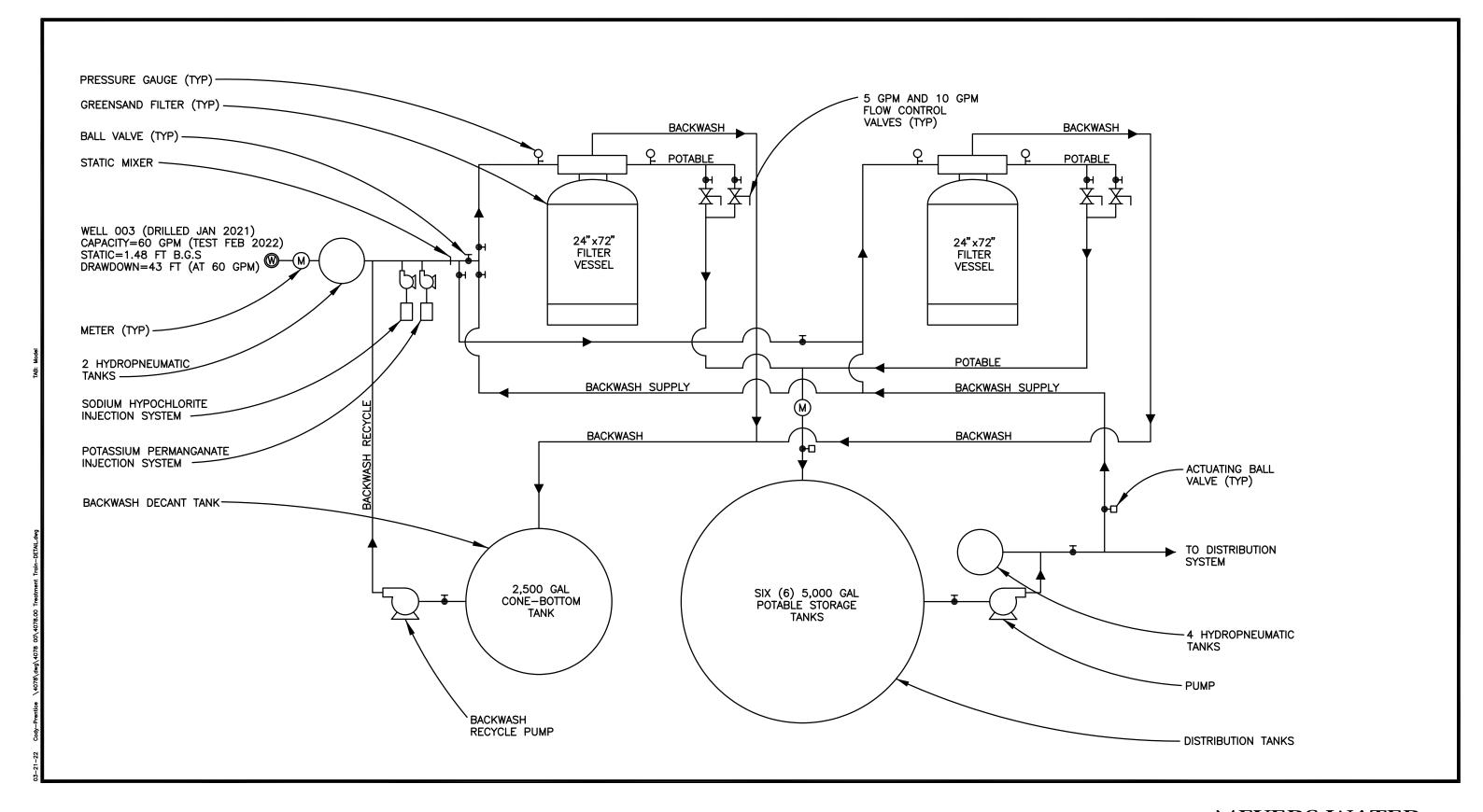
Sample ID	Samp Desc	Comments	Sample Date
SED0057-01	Well 003 - Zone 2 (Lower Zone)	Client Matrix Water	04/05/2021 19:40
Lab Matrix:	Water		
	Analysis:		
EXT-Asbestos, Drinking Water by EPA 100.2		Shipped by BSK- Sac, 4/6	/2021

050

Rasen Monda

4/6/2

FPan


4/7/21

9.70am

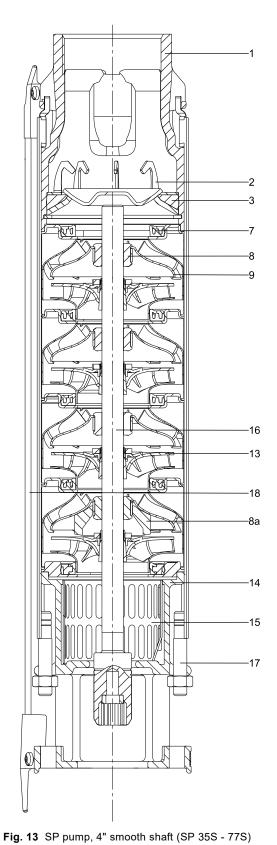
Received By

Date

Appendix E - Treatment System Schematic

MEYERS WATER COMPANY

SYSTEM SCHEMATIC
MARCH 2022


Appendix F - Treatment System Component Cut Sheets

SP

Submersible pumps, motors, and accessories North America, 60 Hz

Sectional drawing, SP pump 4" smooth shaft (SP 35S - 77S)

Material specification

Pos.	Component	Material	Standard	N-version	R-version
PUS.	Component	Material		[AISI (EN)]	
1	Valve casing	Cast stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)
2	Valve cup	Cast stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
3	Valve seat	NBR-FKM	NBR-FKM	NBR-FKM	NBR-FKM
7	Neck ring	TPU/PPS-FKM	TPU/ PPS-FKM	TPU/ PPS-FKM	TPU/ PPS-FKM
8	Bearing	LSR-FKM	LSR/FKM	LSR/FKM	LSR/FKM
8a	Washer for stop ring	Carbon/graphite	HY22 in PTFE mass	HY22 in PTFE mass	HY22 in PTFE mass
9	Chamber	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
13	Impeller	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
14	Suction interconnector	Cast stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)
15	Strainer	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
16	Shaft complete	Stainless steel	1.4057	1.4460	1.4462
17	Strap	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
18	Cable guard	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)

TM06 1110 1614

Sectional drawing, MS motors

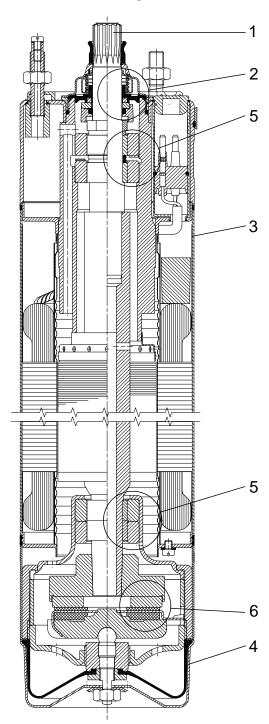
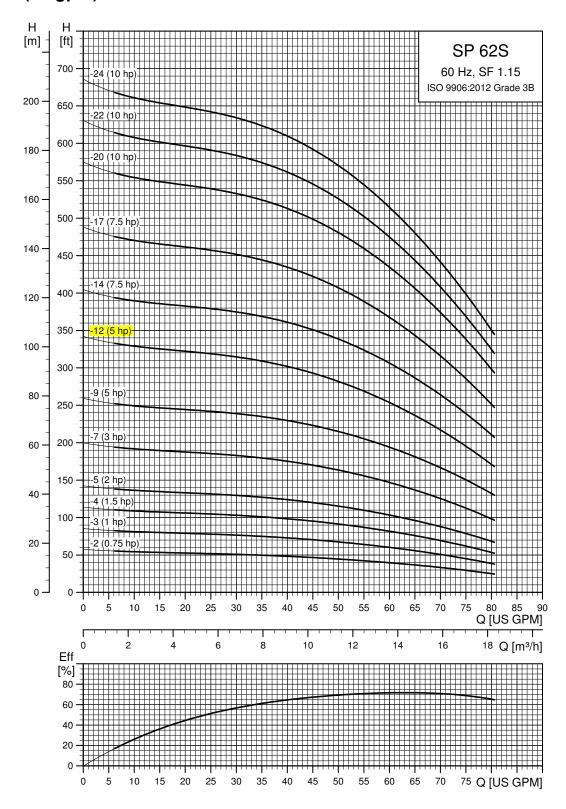


Fig. 17 MS 4000 motor

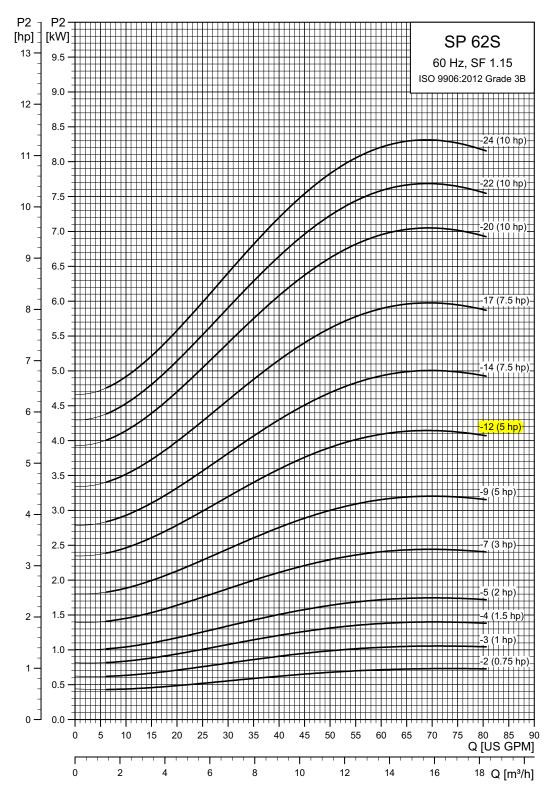
Material specification, MS 402, MS 4000, and MS 6000C motors

Pos.	Part	MS 402	MS 4000 MS 6000C
		[AISI	(EN)]
1	Shaft	431	431
2	Shaft seal	NBR	NBR/SiC/SiC
3	Motor sleeve	304 (1.4301)	304 (1.4301)
4	Motor end shield	304 (1.4301)	304 (1.4301)
5	Radial bearing	Ceramic	Ceramic/ tungsten carbide
6	Axial bearing	Ceramic/carbon	Ceramic/carbon
	Rubber parts	NBR	NBR


R-version motor

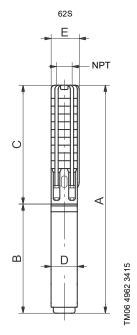
TM00 7865 2196

Pos.	Part	MS 4000 MS 6000C
1	Shaft	318 LN
2	Shaft seal	SiC/SiC
3	Motor sleeve	904L (1.4539)
4	Motor end shield	904L (1.4539)
5	Radial bearing	Ceramic/tungsten carbide
6	Thrust bearing	Ceramic/carbon
	Rubber parts	NBR


4" and larger wells - continued

SP 62S (62 gpm)

4" and larger wells - continued


SP 62S (62 gpm) pump power requirement (P2)

4" and larger wells - continued

SP 62S (62 gpm) pump with 4" motor

Pump model	Nom. Motor				Dimensions [in (mm)]						
	[ft]	Ph	Volts [V]	[Hp]	[rpm]	A	В	С	D	E	weight (complete) [lb]
		62S -	Motor	diame	ter 4-inch,	3-wire motor, 6	0 Hz, rated fi	ow rate 62 gp	m (2" NPT)		
	40	1	230	.75	3407	28.35 (720)	13.08 (332)	15.28 (388)	3.75 (95)	3.98 (101)	29.7
60607.0	40	3	230	.75	■ 3423	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
62S07-2	40	3	460	.75	■ 3423	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
	40	3	575	.75	3414	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
	57	1	230	1	3381	31.89 (810)	13.67 (347)	18.23 (463)	3.75 (95)	3.98 (101)	33.0
62S10-3	58	3	230	1	■ 3407	30.71 (780)	12.49 (317)	18.23 (463)	3.75 (95)	3.98 (101)	30.4
02510-3	58	3	460	1	3407	30.71 (780)	12.49 (317)	18.23 (463)	3.75 (95)	3.98 (101)	30.2
	57	3	575	1	■ 3398	30.71 (780)	12.49 (317)	18.23 (463)	3.75 (95)	3.98 (101)	30.2
	78	1	230	1.5	3427	36.42 (925)	15.24 (387)	21.19 (538)	3.75 (95)	3.98 (101)	38.5
00045.4	79	3	230	1.5	3439	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.0
62S15-4	79	3	460	1.5	3439	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.0
	78	3	575	1.5	3415	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	34.8
	98	1	230	2	• 3433	43.71 (1110)	19.57 (497)	24.14 (613)	3.75 (95)	3.98 (101)	56.0
00000 5	98	3	230	2	3431	39.38 (1000)	15.24 (387)	24.14 (613)	3.75 (95)	3.98 (101)	40.5
62S20-5	98	3	460	2	3431	39.38 (1000)	15.24 (387)	24.14 (613)	3.75 (95)	3.98 (101)	40.7
	98	3	575	2	3430	39.38 (1000)	15.24 (387)	24.14 (613)	3.75 (95)	3.98 (101)	40.5
	136	1	230	3	• 3427	52.76 (1340)	22.72 (577)	30.04 (763)	3.75 (95)	3.98 (101)	68.3
	138	3	208	3	• 3437	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	55.1
62S30-7	138	3	230	3	• 3437	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	55.1
	141	3	460	3	• 3466	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	55.1
	141	3	575	3	• 3470	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	54.9
	184	1	230	5	• 3490	62.60 (1590)	26.66 (677)	35.95 (913)	3.75 (95)	3.98 (101)	82.8
	186	3	208	5	• 3507	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.8
62S50-9	186	3	230	5	• 3507	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.8
	186	3	460	5	• 3506	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.8
	182	3	575	5	• 3470	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.6
	237	1	230	5	• 3446	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	88.1
	242	3	208	5	• 3473	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	77.1
62S50-12	242	3	230	5	• 3473	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	77.1
	242	3	460	5	• 3471	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	77.1
	244	3	575	5	• 3470	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	76.9
	287	3	208	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
	287	3	230	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
62S75-14	287	3	460	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
	287	3	575	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
	342	3	208	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
	342	3	230	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
62S75-17	342	3	460	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
	342	3	575	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
	407	3	460	10	• 3485	99.02 (2515)	30.60 (777)	68.43 (1738)	3.75 (95)	3.98 (101)	111.0
62S100-20	407	3	575	10	• 3485	99.02 (2515)	30.60 (777)	68.43 (1738)	3.75 (95)	3.98 (101)	111.0
	445	3	460	10	• 3472	104.93 (2665)	30.60 (777)	74.34 (1888)	3.75 (95)	3.98 (101)	114.5
62S100-22	445	3	575	10	• 3472	104.93 (2665)	30.60 (777)	74.34 (1888)	3.75 (95)	3.98 (101)	114.5
	443	3	460	10	• 3460	110.83 (2815)	30.60 (777)	80.24 (2038)	3.75 (95)	3.98 (101)	118.0
62S100-24	478	3	575	10	• 3460	110.83 (2815)	30.60 (777)	80.24 (2038)	3.75 (95)	3.98 (101)	118.0
	4/8	3	5/5	10	• 3460	110.03 (2815)	3U.DU (///)	ou.z4 (zu38)	ა./ ⴢ (95)	ა.ყი (101)	116.0

E = Maximum diameter of pump including cable guard and motor.

Notes: Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

- MS 402 motor.
- MS 4000 motor.

Submittal Data Challenger "I" Series

Water System Tanks

Job Name:	Schedule #:
Location:	Model #:
Engineer:	Representative:

Description

Contractor: __

Challenger "I" series tanks are diaphragm type, pre-charged hydro-pneumatic tanks designed for residential and commercial water well, pressure booster, and irrigation systems.

Materials of Construction

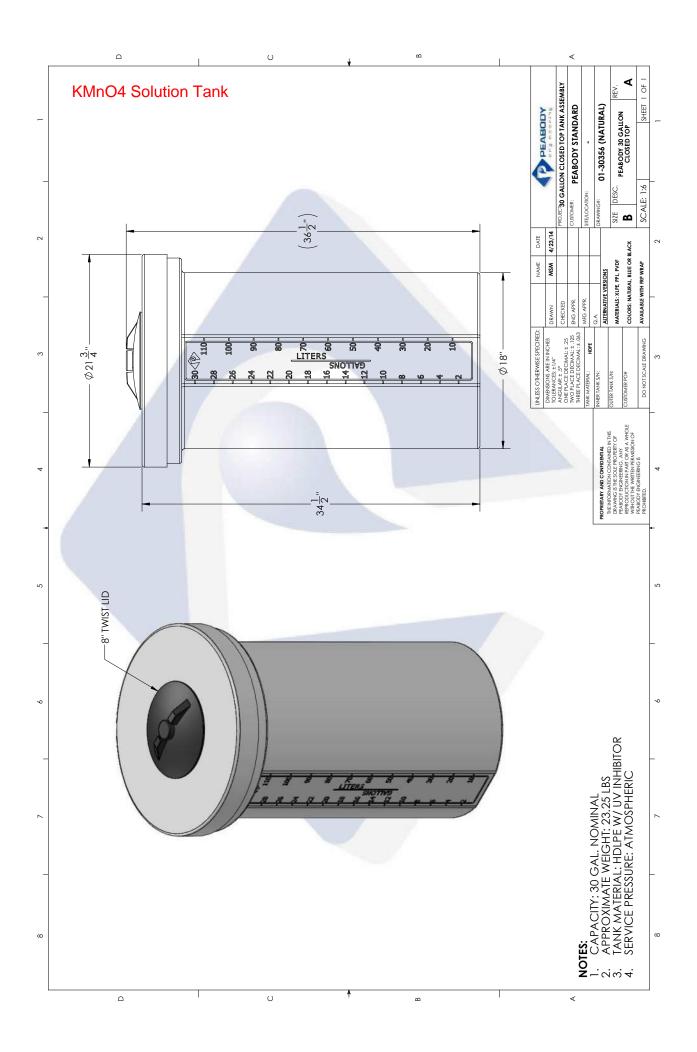
Shell: Drawn steel w/ epoxy finish

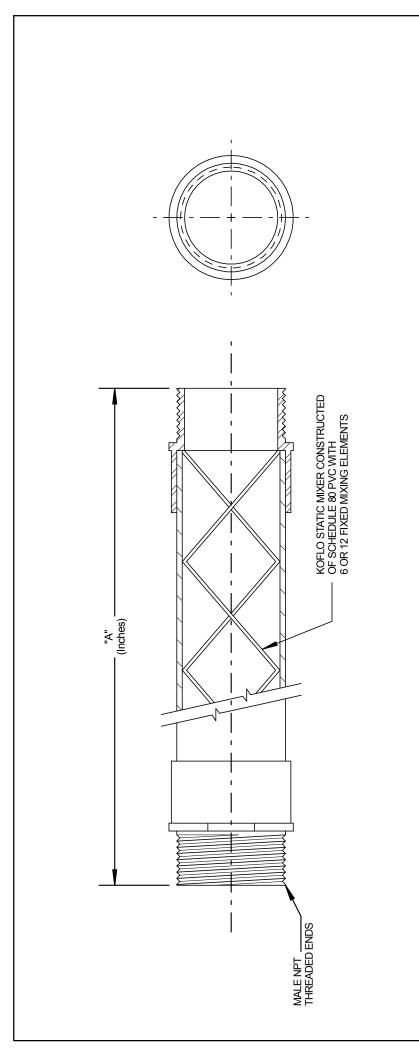
Diaphragm: Butyl rubber w/ copolymer polypropylene lower water chamber

Connection: Stainless steel FPT

Ratings

Max. Working Pressure: 125 PSI Max. Working Temp: 140 F Pre-Charge (adjustable): 38 PSI





Tank Specifications								
Model	Diameter	Height	System	Volume	Drav	Weight		
Model	(inches)	(inches)	Connection (inches)	(gallons)	20/40	30/50	40/60	(lbs)
I 15-PC 44	16	22	1	14	5.6	4.8	4.1	28
I 20-PC 66	16	29	1	20	8.1	6.8	5.9	36
I 25-PC 88	16	34.5	1	26	10.5	8.9	7.7	41
I 30-PC 111	21	27.75	1 1/4	32	12.9	10.9	9.4	54
I 35-PC 122	16	42.75	1	33.4	13.3	11.3	9.7	49
I 45-PC 144	21	36.25	1 1/4	44	17.7	15.0	13.0	67
I 60-PC 211	21	48	1 1/4	62	25.0	21.1	18.3	82
I 80-PC 244	21	62	1 1/4	81	32.6	27.6	23.9	99
I 85-PC 266	26	44.5	1 1/4	85	34.3	29.0	25.1	121
I 120-PC 366	26	59.75	1 1/4	119	48.0	40.6	35.1	153

1001100	2
202	ט
2	3
d	ט
die	ס
0	2
ر ا	5

	DRAWN BY NJF	REVISED 6/12/09	REVISED 7/15/10	REVISED 8/1/14	DRAWING NUMBER:	KD-1025
Koflo Corporation 309 CARY POINT DR. CARY, IL 60013	APPROVED BY	1+1				STOCK SCHEDULE 80 THREADED PVC MIXER
杨郎	SCALE: NONE	DATE: 10/15/01	CUSTOMER:		MODEL NO:	STOCK SCHEDUL

"A"	12 Element	11"	14"	19"	25"	26"	33"
12 Element	Model Number	1/2-80-4-12-2	3/4-80-4-12-2	1-80-4-12-2	1.25-80-4-12-2	1.5-80-4-12-2	2-80-4-12-2
"A"	6 Element		8	10"	14"	15"	18"
6 Element	Model Number	1/2-80-4-6-2	3/4-80-4-6-2	1-80-4-6-2	1.25-80-4-6-2	1.5-80-4-6-2	2-80-4-6-2
Size		1/2"	3/4"	-	1-1/4"	1-1/2"	2"

KMnO4 Dosing Pump

DDC - SMART Digital Series Pumps (0.0015 to 4.00 gph)

The DDC SMART Digital dosing series represents the latest generation in Digital Dosing pumps from Grundfos. Available in three sizes and two control options, the DDC range brings continuity for the well known DME and DDI digital dosing lines.

With its 1000:1 turn down ratio, removable mounting bracket and flexible control panel installation, the DDC product range brings simplicity and flexibility to adapt your pump and cover a great variety of metering applications.

Smooth and Continuous Dosing

The DDC stepper motor technology ensures an optimum mixing ratio at the injection point without the need for additional accessories such as static mixers. It also provides a significant reduction of pressure peaks, preventing mechanical stress on wearing parts such as diaphragm, tubing, and connections, resulting in less maintenance required.

Full Stroke Length at All Times

The pump always operates at full stroke length, irrespective of the capacity set; this ensures maximum volume displacement per stroke, optimum accuracy, easy priming and improved suction.

1000:1 Turndown Ratio

The Digital Dosing range is designed to give you superior flexibility and accuracy even when dosing very small volumes.

Maximum Capacity Setting

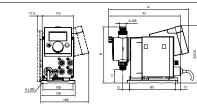
With the DDC series you decide what the maximum capacity should be. You can select any value within the performance range of each model and the pump will redefine the injection speed and adjust the operation scale within that range. So you only need a few models to cover multiple applications.

Anti-Cavitation / SlowMode

The variable speed of DDC pumps facilitates a unique anti-cavitation function for high viscosity liquids. This function gives you slower suction speed (50 or 25% of the maximum speed), ensuring optimal priming and pumping of even the most difficult liquids.

Calibration

With Digital Dosing, calibration is easier and faster than ever. Simply place a graduated glass under the pump and activate the calibration program. The pump will perform 100 strokes and indicate how much it thinks it has pumped. Adjust the figure by entering the correct numbers if necessary. After this, the dosage can be adjusted without recalibrating the pump.


Different Control Options and Materials

Available in two different control options: A /AR. The DOC series has the right pump for each application.

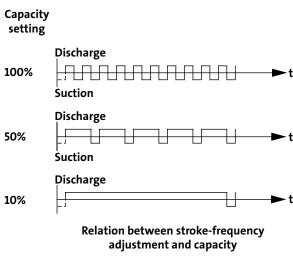
Dimensions [inches (mm)]

	DDC 6	DDC 9	DDC 15
Α	11 (2	11 (280) 11 (
В	7.72 (7.72 (196) 7.89 (200.5)	
С	1.83 (46.5)	1.55 (39.5)
D	0.94	(24)	0.94 (24)

Product Range and Performance Data

Pump type	Capacity	DDC 6-10	DDC 9-7	DDC 15-4
Capacity at Max. Pressure	g/h (I/h)	1.5 (6)	2.4 (9)	4.0 (15)
max. pressure	psi (bar)	150 (10)	100 (7)	60 (4)
Setting range		1000:1	1000:1	1000:1

Stroke frequency	spm	140	200	180
Suction lift: primed/dry	ft (m)	19.6 (6)/6.5 (2)	19.6 (6)/6.5 (2)	19.6 (6)/9.8 (3)
Viscosity*	cps	2500/50	2000/50	2000/300
Power supply	V, Hz	100-240 V 50/60 Hz	100-240 V 50/60 Hz	100-240 V 50/60 Hz
Accuracy	%	+/-1	+ / -1	+ / -1


^{*} With Spring-Loaded valves

Performance Range

P [psi] P [bar] 150 10 Capa settl 101 7 1005 50% 0 0 6 9 12 15 Q [l/h] 1.5 2.4 3.17 4 Q [gph]

Functional Description

DDC's electronically controlled variable-speed (stepper) motor provides optimum control of the stroke speed.

L-DDC-SL-01 Rev. 6/10

Please note, due to volume, carriers have advised of potential delays. We appreciate your patience during this unprecedented time.

800-548-1234

Summary

Accessories

More Like This

Just For You

Part#: 62800

Weight: 0.3 lbs

Brand: Parker Hannifin (https://www.usabluebook.com/m-1768-parker-hannifin.aspx)

Teflon® PFA Female Adapter, 1/4" Tube x 1/2" NPT

- Ideal for corrosive environments
- · Leak-tight connection; no tools required
- Rated to 125 psi

Price:

\$60.29 USD/Each

Need Help? Call 800-548-1234

PFA fittings are ideal for use in severely corrosive environments - they stand up to harsh chemical applications. These easy-to-use fittings provide a leak-tight connection without requiring any tools. Just insert your tubing into the fitting assembly and tighten the nut.

RELATED SEARCHES

Male Adapter (/P-395219-Hydrant-Buddy-Adapter-34-Female-To-1-Male.Aspx)

RELATED CATEGORY

Female Adapters (/C-1394.Aspx) Pvc Female Adapters (/C-793.Aspx)

Clamp Adapter (/Theme/Clamp-Adapter)

Spears 1-1/2 Inch Adapter (/Theme/Spears-1-Sp-45-Sp-1-Sp-47-Sp-2-Inch-Adapter)

RELATED PRODUCTS

(/p-274371-female-x-male-hex-adapter-1npt-x-1-12nst.aspx)

(/p-274371-female-x-male-hex-adapter-1npt-x-1-12nst.aspx)

Female x Male Hex Adapter 1"NPT x 1 (/p-274371-female-x-male-hex-adapter-1npt-x-1-12nst.aspx)

More Details (/p-274371-female-x-male-hex-adapter-1npt-x-1-12nst.aspx)

(/p-283381-ss-reinforced-adapter-sch-80-cpvc-1-14-socket-x-nptf.aspx)

(/p-283381-ss-reinforced-adapter-sch-80-cpvc-1-14-socket-x-nptf.aspx)

SS-Reinforced Adapter, Sch. 80 CPVC, 1-1/4" Socket x (/p-283381-ss-reinforced-adapter-sch-80-cpvc-1-14-socket-x-nptf.aspx)

More Details (/p-283381-ss-reinforced-adapter-sch-80-cpvc-1-14-socket-x-nptf.aspx)

(/p-283385-ss-reinforced-adapter-sch-80-cpvc-34-socket-x-nptf-pack-of-4.aspx)

(/p-283385-ss-reinforced-adapter-sch-80-cpvc-34-socket-x-nptf-pack-of-4.aspx)

SS-Reinforced Adapter, Sch. 80 CPVC, 3/4" Socket x (/p-283385-ss-reinforced-adapter-sch-80-cpvc-34-socket-x-nptf-pack-of-4.aspx)

More Details (/p-283385-ss-reinforced-adapter-sch-80-cpvc-34-socket-x-nptf-pack-of-4.aspx)

Please note, due to volume, carriers have advised of potential delays. We appreciate your patience during this unprecedented time.

800-548-1234

Summary

More Like This

Just For You

Part#: 61166

Weight: 0.5 lbs

Brand: Neptune Chemical Pump Company (https://www.usabluebook.com/m-1377-neptune-chemical-pump-company.aspx)

Injection Quill (PVC & Ceramic 1/2" MNPT x 1/2" MNPT

- Built-in check valve prevents backflow
- Pressure ratings to 150 or 3,000 psi

Price:

\$135.20 USD/Each

Need Help? Call 800-548-1234

Neptune chemical injection quills feature a built-in spring-loaded check valve that prevents backflow. Choose from a wide range of sizes and materials to best suit your application—even if you're working with corrosive materials. Quills are 2-5/8" long. Longer lengths are available as special order; contact USABlueBook for more information.

Tech Specs

• Size: 1/2" x 1/2" NPT(M)

Body Material: PVC

- PSI: 150
- Quill Length: 2-5/8"

RELATED SEARCHES

Injection Quill (/P-266751-Neptune-Injection-Quillsbquo-12quot-Nptmsbquo-500fsbquo-1000-Psisbquo-Qc-316-50.Aspx)

RELATED CATEGORY

1/2 Inch Injection Quill (/Theme/1-Sp-47-Sp-2-Inch-Injection-Quill)

RELATED PRODUCTS

(/p-266751-neptune-injection-quillsbquo-12quot-nptmsbquo-500fsbquo-1000-psisbquo-qc-316-50.aspx)

(/p-266751-neptune-injection-quillsbquo-12quot-nptmsbquo-500fsbquo-1000-psisbquo-qc-316-50.aspx)

Neptune Injection Quill, 1/2" NPT(M), 500F, 1000 PSI, (/p-266751-neptune-injection-quillsbquo-12quot-nptmsbquo-500fsbquo-1000-psisbquo-qc-316-50.aspx)

More Details (/p-266751-neptune-injection-quillsbquo-12quot-nptmsbquo-500fsbquo-1000-psisbquo-qc-316-50.aspx)

(/p-266760-injection-quill-pvcceramic-34-nptm-x-34-nptm.aspx)

Injection Quill (PVC/Ceramic) 3/4' NPTM x 3/4' NPTM (/p-266760-injection-quill-pvcceramic-34-nptm-x-34-nptm.aspx)

More Details (/p-266760-injection-quill-pvcceramic-34-nptm-x-34-nptm.aspx)

(/p-266761-injection-quill-kynar-ceram-12-nptm-x-12-nptm.aspx)

(/p-266761-injection-quill-kynar-ceram-12-nptm-x-12-nptm.aspx)

Injection Quill (Kynar & Ceram 1/2" NPT(M) x (/p-266761-injection-quill-kynar-ceram-12-nptm-x-12-nptm.aspx)

More Details (/p-266761-injection-quill-kynar-ceram-12-nptm-x-12-nptm.aspx)

Please note, due to volume, carriers have advised of potential delays. We appreciate your patience during this unprecedented time.

800-548-1234

Get the Best Treatment"

Summary

More Like This

Just For You

Part#: 206776

Weight: 0.4 lbs

Brand: Spears (https://www.usabluebook.com/m-1211-spears.aspx)

2" x 1/2" PVC Reducing Tee SOC x FPT Sch80, 802-247

Price:

\$18.29 USD/Each

Need Help? Call 800-548-1234

RELATED PRODUCTS

(/p-360684-1-14quot-sch40-pvc-fpt-teesbquo-405-012.aspx)

(/p-360684-1-14quot-sch40-pvc-fpt-teesbquo-405-012.aspx)

1-1/4" Sch 40 PVC FPT Tee, 405-012, Pk/25 (/p-360684-1-14quot-sch40-pvc-fpt-teesbquo-405-012.aspx)

More Details (/p-360684-1-14quot-sch40-pvc-fpt-teesbquo-405-012.aspx)

(/p-361132-5quot-sch40-pvc-socket-teesbquo-401-050.aspx)

(/p-361132-5quot-sch40-pvc-socket-teesbquo-401-050.aspx)

5" Sch 40 PVC Socket Tee, 401-050, Pk/5 (/p-361132-5quot-sch40-pvc-socket-teesbquo-401-050.aspx)

More Details (/p-361132-5quot-sch40-pvc-socket-teesbquo-401-050.aspx)

(/p-361149-1quot-sch40-pvc-fpt-teesbquo-405-010.aspx)

(/p-361149-1quot-sch40-pvc-fpt-teesbquo-405-010.aspx)

1" Sch 40 PVC FPT Tee, 405-010, Pk/50 (/p-361149-1quot-sch40-pvc-fpt-teesbquo-405-010.aspx)

More Details (/p-361149-1quot-sch40-pvc-fpt-teesbquo-405-010.aspx)

STRUCTURAL TANKS

COMPOSITE PRESSURE VESSELS

DESIGNED FOR COMMERCIAL SOFTENING AND FILTRATION APPLICATIONS

Pentair Structural[§] Composite Pressure Vessels offer reinforced fiberglass construction for outstanding performance and durability. Available in capacities up to 1,600 gallons, composite vessels are available with a variety of different configurations. ASME code available.

FEATURES/BENEFITS

For commercial and industrial water treatment and storage

100% composite fiberglass construction

Outstanding performance and durability in harsh chemical environments

Absolutely will not – and cannot – rust

Requires little or no maintenance Capacities up to 1,600 gallons

Factory-backed five-year warranty Commercial softening and filtration

MATERIAL OF CONSTRUCTION

Polyethylene inner shell

INSTALLATION TIPS

Bolt base to floor

Calculate height for valve and base combined

GR - Gray

COLOR OPTIONS

AL – Almond BL – Blue

- Blue NA – Natural

BK – Black

OPERATING PARAMETERS

Maximum operating pressure – 150 psi

Maximum operating temperature – 120° F (threaded); 150°F (flanged)

PENTAIR DESIGN PARAMETERS

Safety factor: 4:1

Minimum burst at 600 psi

Tested to 250,000 cycles without leakage

NSF DESIGN PARAMETERS

Safety factor: 4:1

Minimum burst at 600 psi

Tested to 100,000 cycles without leakage

3

ASME DESIGN PARAMETERS

Top/Bottom Flange

- Safety factor 5:1
- Minimum burst at 750 psi
- Tested to 33,000 cycles without leakage

Side Flange

- Safety factor 6:1
- Minimum burst at 900 psi
- Tested to 100,000 cycles without leakage

by NSF International to NSF/ ANSI Standard 61 for material and structural integrity requirements.

Vessels Tested and Certified

SPECIFICATIONS

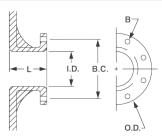
VESSEL	DESCRIPTION	HEIGHT W/BASE INCHES / MM	HEIGHT W/O BASE INCHES / MM	CAPACITY GALLONS / LITERS	CUBIC FEET	BASE	SHIP WEIGHT LBS.
	18X65 COMP 4"T	67 / 1702	65.7 / 1669	64 / 242	8.56	SMC	67
18" DIA.	18X65 COMP 4"T 4"B	73.13 / 1858	65.6 / 1666	64 / 242	8.56	SMC EXT	74
	18X65 COMP 6"TF 6"BF	84.12 / 2137	70.5 / 1791	62 / 235	8.29	TRIPOD	92
	21X36 COMP 4"T	41.7 / 1059	38.2 / 970	46 / 174	6.15	SMC	49
0411 D14	21X36 COMP 4"T 4"B	47.5 / 1207	38.2 / 970	45 / 170	6.02	SMC EXT	53
21" DIA.	21X62 COMP 4"T	67 / 1702	63.4 / 1610	84 / 318	11.23	SMC	95
	21X62 COMP 4"T 4"B	72.8 / 1849	63.5 / 1613	84 / 318	11.23	SMC EXT	102
	24X38 COMP 4"T	42.6 / 1082	38.5 / 978	61 / 231	8.15	SMC	65
	24X50 COMP 4"T	55.6 / 1412	51.5 / 1308	84 / 318	11.23	SMC	90
	24X50 COMP 4"T 4"B	63 / 1600	52.9 / 1344	84 / 318	11.23	SMC EXT	97
	24X65 COMP 4"T	65.2 / 1656	61.1 / 1552	100 / 379	13.37	SMC	109
	24X65 COMP 4"T 4"B	70.1 / 1781	60 / 1524	100 / 379	13.37	SMC EXT	115
24" DIA.	24X65 COMP 6"TF	65 / 1651	61.2 / 1554	100 / 379	13.37	SMC	114
	24X65 COMP 6"TF 6"BF	79 / 2007	65 / 1651	100 / 379	13.37	TRIPOD	124
	24X72 COMP 4"T	74.19 / 1884	70.12 / 1781	118 / 447	15.77	SMC	109
	24X72 COMP 4"T 4"B	80.4 / 2042	70.3 / 1786	119 / 450	15.91	SMC EXT	124
	24X72 COMP 6"TF	77 / 1956	73.4 / 1864	119 / 450	15.91	SMC	137
	24X72 COMP 6"TF 6"BF	88.5 / 2248	74.5 / 1892	119 / 450	15.91	TRIPOD	147
	30X60 COMP 6"TF	71.6 / 1819	64.3 / 1633	151 / 572	20.19	SMC EXT	195
	30X60 COMP 6"TF 6"BF	82.5 / 2096	68.5 / 1740	151 / 572	20.19	TRIPOD	205
0011 711	30X72 COMP 4"T	78.9 / 2004	69.8 / 1773	187 / 708	25.00	SMC EXT	198
30" DIA.	30X72 COMP 4"T 4"B	77.2 / 1961	69.8 / 1773	187 / 708	25.00	SMC EXT	205
	30X72 COMP 6"TF	79.73 / 2025	70 / 1778	187 / 708	25.00	SMC EXT	195
	30X72 COMP 6"TF 6"BF	88.24 / 2241	74.67 / 1897	187 / 708	25.00	TRIPOD	211
	36X36 COMP 6"TF 6"BF	55.3 / 1405	41 / 1041	118 / 447	15.77	TRIPOD	148
	36X57 COMP 6"TF	68 / 1727	59.3 / 1506	205 / 776	27.40	SMC EXT	195
	36X57 COMP 6"TF 6"BF	77.3 / 1963	63 / 1600	205 / 776	27.40	TRIPOD	225
0/" DIA	36X72 COMP 4"T	80.4 / 2042	71.8 / 1824	264 / 999	35.29	SMC EXT	264
36" DIA.	36X72 COMP 4"T 4"B	80.4 / 2042	70.5 / 1791	264 / 999	35.29	SMC EXT	285
	36X72 COMP 6"TF	82.29 / 2090	73.54 / 1868	264 / 999	35.29	SMC EXT	295
	36X72 COMP 6"TF 6"BF	90.1 / 2289	76.2 / 1935	264 / 999	35.29	TRIPOD	305
	36X72 COMP 6"TF 6"BF 4"TBSF	89.6 / 2276	75.3 / 1913	264 / 999	35.29	TRIPOD	315
	42X72 COMP 6"TF	72.5 / 1842	71.1 / 1806	345 / 1306	46.12	SMC SHORT	370
42" DIA.	42X72 COMP 6"TF 6"BF	90.1 / 2289	73 / 1854	345 / 1306	46.12	TRIPOD	400
	42X72 COMP 6"TF 6"BF 4"TBSF	94.6 / 2403	77.5 / 1969	345 / 1306	46.12	TRIPOD	415
	48X72 COMP 6"TF	81.5 / 2070	75.2 / 1910	463 /1753	61.89	SMC SHORT	494
48" DIA	48X72 COMP 6"TF 6"BF	91.91 / 2335	76 / 1930	463 /1753	61.89	TRIPOD	500
	48X72 COMP 6"TF 6"BF 4"TBSF	96.75 / 2457	80.75 / 2051	463 /1753	61.89	TRIPOD	504
	63X67 COMP 6"TF 6"BF	81.5 / 2070	67.1 / 1704	600 / 2271	80.21	TRIPOD	680
	63X86 COMP 6"TF 6"BF	98.88 / 2512	84.5 / 2146	900 / 3407	120.31	TRIPOD	950
(0) DIA	63X86 COMP 16"TMWY 6"BF	99 / 2515	84.5 / 2146	900 / 3407	120.31	TRIPOD	950
63" DIA.	63X86 COMP 16"TMWY 6"BF 4"TBSF	99 / 2515	85 / 2159	900 / 3407	120.31	TRIPOD	960
	63X116 16"TMWY 6" BF 4" TBSF	130 / 3302	116 / 2946	1250 / 4732	167.10	TRIPOD	1190
	63X144 16"TMWY 6" BF 4" TBSF	158 / 4013	144 / 3658	1600 / 6057	213.89	TRIPOD	1398

^{*}Measurements are subject to change without notice and are for reference only.

NOTE: Elexible connections must be installed between hard piping and tank openings. Failure to install flex connection properly with the vessel will void the warranty.

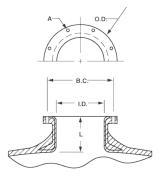
NOTE: Different base options can be selected on different tank diameters. The bases selected above illustrate most common base selection.

DOME VOLUME (GALLONS) AND STRAIGHT WALL GALLON PER INCH

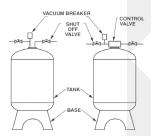


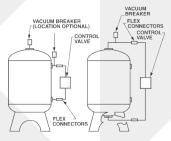
	NOMINAL DIAMETER							
D (INCHES)	GALLONS* (ONE DOME)	GALLON/ INCH (APPROX.)	A (SQ. FEET)					
12	1.0	0.5	0.7					
13	1.4	0.5	0.9					
14	1.7	0.6	1.1					
16	2.7	0.8	1.3					
18	3.7	1.0	1.8					
21	6.2	1.4	2.4					
24	9.3	1.9	3.0					
30	18	2.9	4.6					
36	33	4.2	6.7					
42	52	5.7	9.0					
48	74	7.5	12.0					
63	168	13.0	20.0					

^{*}Cubic Ft. = 0.1337 x Gallons


SIDE FLANGE

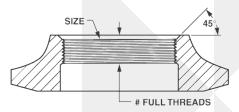
DIMENSIONS								
SIZE	L	I.D.	B.C.	0.D.	A Bolt dia.	NUMBER OF HOLES	WEIGHT (LBS.)	
4" ANSI	4.1"	4.0"	7.5"	9.0"	0.63"	8	6.4	


TOP AND BOTTOM OPENING FLANGES/MANWAY

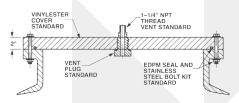

DIMENSIONS							
SIZE	L	I.D.	B.C.	0.D.	A BOLT DIA.	NUMBER OF HOLES	WEIGHT (LBS.)
6" SNA	3.6"	5.9"	8.5"	9.4"	0.31"	12	5.8
10" ANSI	3.7"	10.0"	14.3"	16.0"	0.88"	12	17.8
16" Manway SNA	4.3"	16.0"	20.4"	21.3"	0.50"	24	34.0

VACUUM BREAKER INSTALLATION

FLEX CONNECTORS INSTALLATION



NOTE: Flexible connectors must be installed between hard piping and tank openings. These pressure vessels are treated for an internal negative pressure of 5y HG (17 Pa) vacuum below atmospheric. If negative pressure could ever exceed 5y Hg (17 Pa), an adequate vacuum breaker must also be properly installed. Failure to install flex connection properly, or improper installation of a vacuum breaker when required, may void the warranty.


TOP AND BOTTOM OPENING THREADS

SPECIFICATIONS							
SIZE	COMPOSITE/ POLY GLASS	NUMBER OF FULL THREADS	COMPOSITE				
2.5" - 8" NPSM	6	3 min	6				
4" - 8" UN	7	3 min	7				
4.5" - 8" Buttress	7	3 min	7				

MANWAY COVER

SPECIFICATIONS						
MATERIAL	PRESSURE RATING	TAPPING				
CPVC	100 psi	As requested				
VE	150 psi	As shown only				

ADDER DIMENSIONS

*Measurements are subject to change without notice and are for reference only.

DIMENSIONS						
FLECK VALVE	TANK DIA. (INCHES/MM)	ADDER HT. (X) (INCHES/MM)				
2750	18/475	6.5/165				
2850	21/533	6.5/165				
2900	24, 30/610, 762	12/305				
3150	42/1067	10/254				
3900	48-63/1219-1600	15/381				

13845 BISHOPS DR., SUITE 200, BROOKFIELD, WI 53005 USA P: 262.238.4400 | WATERPURIFICATION.PENTAIR.COM | CUSTOMER CARE: 800.279.9404 | tech-support@pentair.com

© 2018 Pentair Residential Filtration, LLC. All rights reserved.

§For a detailed list of where Pentair trademarks are registered, please visit waterpurification.pentair.com/brands. Pentair trademarks and logos are owned by Pentair plc or its affiliates. Third party registered and unregistered trademarks and logos are the property of their respective owners. 40846 Rev G AP18

Inversand Company

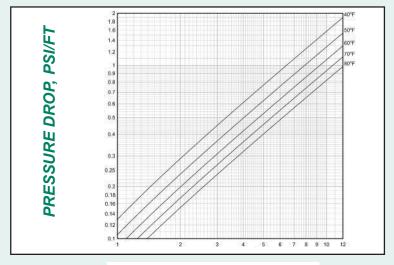
GREENSANDPLUS™ TECHNICAL DATA

Performance Media for Water Filtration

Removes iron, manganese, hydrogen sulfide, arsenic and radium.

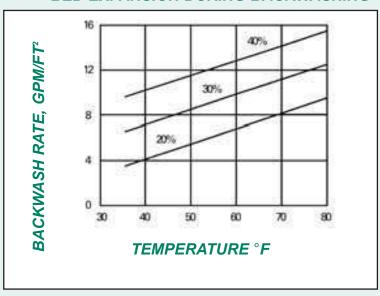
GreensandPlus[™] is a black filter media used for removing soluble iron, manganese, hydrogen sulfide, arsenic and radium from groundwater supplies.

The manganese dioxide coated surface of GreensandPlus acts as a catalyst in the oxidation reduction reaction of iron and manganese.


The silica sand core of GreensandPlus allows it to withstand waters that are low in silica, TDS and hardness without breakdown.

GreensandPlus is effective at higher operating temperatures and higher differential pressures than standard manganese greensand. Tolerance to higher differential pressure can provide for longer run times between backwashes and a greater margin of safety.

Systems may be designed using either vertical or horizontal pressure filters, as well as gravity filters.


GreensandPlus is a proven technology for iron, manganese, hydrogen sulfide, arsenic and radium removal. Unlike other media, there is no need for

GREENSANDPLUS PRESSURE DROP (CLEAN BED)

FLOW RATE (GPM/FT²)

BED EXPANSION DURING BACKWASHING

extensive preconditioning of filter media or lengthy startup periods during which required water quality may not be met.

GreensandPlus is an exact replacement for manganese greensand. It can be used in CO or IR applications and requires no changes in backwash rate or times or chemical feeds.

GreensandPlus has the WQA Gold Seal Certification for compliance with NSF/ANSI 61.

REACH Registration 01-2119452801-43-0020 for import to the EU.

Packaging is available in 1/2 cubic foot bags or 1 metric ton (2,205 lbs) bulk sacks.

PHYSICAL CHARACTERISTICS

Physical Form

Black, nodular granules shipped in a dry form

Apparent Density

88 pounds per cubic foot net (1410.26 kg/m3)

Shipping Weight

90 pounds per cubic foot gross (1442.31 kg/m3)

Specific Gravity

Approximately 2.4

Porosity

Approximately 0.45

Screen Grading (dry)

18 X 60 mesh

Effective Size

0.30 to 0.35 mm

Uniformity Coefficient

Less than 1.60

pH Range

6.2-8.5 (see General Notes)

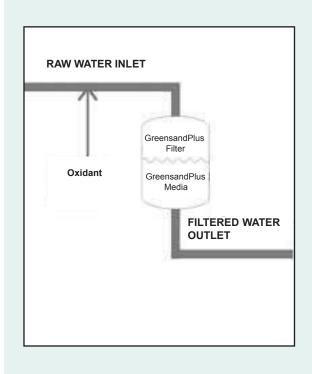
MaximumT emperature

No limit

Backwash Rate

Minimum 12 gpm/sq. ft. at 55°F (29.4 m/hr @ 12.78°C) (see expansion chart)

Service Flow Rate


2 -12 gpm/sq. ft (4.9m/hr - 29.4 m/hr)

Minimum Bed Depth

15 inches (381 mm) of each media for dual media beds or 30 inches minimum (762 mm) of GreensandPlus alone.

METHOD OF OPERATION CO

GreensandPlus: Catalytic Oxidation (CO)

Catalytic Oxidation (CO) operation is recommended in applications where iron removal is the main objective in well waters with or without the presence of manganese. This method involves the feeding of a predetermined amount of chlorine (CI₂) or other strong oxidant directly to the raw water before the GreensandPlus Filter.

Chlorine should be fed at least 10-20 seconds upstream of the filter, or as far upstream of the filter as possible to insure adequate contact time. A free chlorine residual carried through the filter will maintain GreensandPlus in a continuously regenerated condition.

For operation using chlorine, the demand can be estimated as follows:

 $mg/L Cl_2 = (1 \times mg/L Fe) + (3 \times mg/L Mn) + (6 \times mg/L H_2S) + (8 \times mg/L NH_3)$

SUGGESTED OPERATING CONDITIONS

Bed Type

Dual media: anthracite 15-18 in. (381 mm - 457 mm) and GreensandPlus 15-24 in. (381 mm - 610 mm)

Capacity

700-1200 grains of oxidized iron and manganese/sq.ft. of bed area based on oxidant demand and operation to iron break through or dp limitations.

Backwash

Sufficient rate using treated water to produce 40% bed expansion until waste water is clear, or for 10 minutes, whichever occurs first.

Air/Water Scour

Optional using 0.8-2.0 cfm/sq. ft. (15 m/hr - 7 m/hr) with a simultaneous treated water backwash at 4.0-4.5 gpm/sq. ft. (9.8 m/hr - 11.03 m/hr).

Raw Water Rinse

At normal service flow rate for 3 minutes or until effluent is acceptable.

Flow Rate

Recommended flow rates with CO operation are 2-12 gpm/sq. ft. (4.9 m/hr - 29.4 m/hr). High concentrations of iron and manganese usually require lower flow rates for equivalent run lengths. Higher flow rates can be considered with very low concentrations of iron and manganese. For optimizing design parameters, pilot plant testing is recommended. The run length between backwashes can be estimated as follows:

What is the run length for a water containing 1.7 mg/L iron and 0.3 mg/L manganese at a 4 gpm/sq. ft. service rate:

Contaminant loading

= $(1 \times mg/L Fe) + (2 \times mg/L Mn)$

 $= (1 \times 1.7) + (2 \times 0.3)$

= (2.3 mg/L or 2.3/17.1 = 0.13 grains/gal. (gpg)

At 1,200 grains / sq. ft. loading ÷ 0.13 gpg = 9,230 gal./sq. ft.

At 4 gpm / sq. ft. service rate 9,230/4 = 2,307 min.

The backwash frequency is approximately every 32-38 hours of actual operation.

The Intermittent regeneration (IR) operation is available for certain applications. Contact your Inversand representative for additional information.

GENERAL NOTES

pΗ

Raw waters having natural pH of 6.2 or above can be filtered through GreensandPlus without pH correction. Raw waters with a pH lower than 6.2 should be pH-corrected to 6.5-6.8 before filtration. Additional alkali should be added following the filters if a pH higher than 6.5-6.8 is desired in the treated water. This prevents the possible adverse reaction and formation of a colloidal precipitate that sometimes occurs with iron and alkali at a pH above 6.8.

Initial Conditioning of GreensandPlus

GreensandPlus media must be backwashed prior to adding the anthracite cap. The GreensandPlus backwash rate must be a minimum of 12 gpm/sq. ft. @ 55°F.

After backwashing is complete, the GreensandPlus must be conditioned. Mix 0.5 gal. (1.9 L) of 6% household bleach or 0.2 gal (0.75 L) of 12% sodium hypochlorite for

Initial Conditioning of GreensandPlus

every 1 cu. ft. (28.3 L cu. m) of GreensandPlus into 6.5 gallons (25 L) of water.

Drain the filter enough to add the diluted chlorine mix. Apply the diluted chlorine to the filter being sure to allow the solution to contact the GreensandPlus media. Let soak for a minimum of 4 hours, then rinse to waste until the "free" chlorine residual is less than 0.2 mg/L. The GreensandPlus is now ready for service.

REFERENCES USA

American Water Company, CA San Jacinto, CA City of Tallahassee, FL Adedge Technologies, Inc., Buford, GA City of Mason City, IL City of Goshen, IN City of Hutchinson, KS City of Burlington, MA Dedham Water Co., MA Raynham Center, MA Northbrook Farms, MD Sykesville, MD Tonka Equipment Company, Plymouth, MN City of New Bern, NC Onslow County, NC Hungerford & Terry, Inc., Clayton, NJ Fort Dix, NJ

Radium and Arsenic Removal Using GreensandPlus

The GreensandPlus CO process has been found to be successful in removing radium and arsenic from well water. This occurs via adsorption onto the manganese and/or iron precipitates that are formed. For radium removal, soluble manganese must be present in or added to the raw water for removal to occur. Arsenic removal requires iron to be present in or added to the raw water to accomplish removal. Pilot plant testing is recommended in either case.

USA

Churchill County, NV Suffolk County Water Authority, NY City of Urbana, OH Roberts Filter Group, Darby, PA

International

Watergroup, Saskatoon, SK Canada
BI Pure Water, Surrey, BC Canada
Sydney, Nova Scotia, Canada
PT Beta Pramesta, Jakarta, Indonesia
PT Besflo Prima, Jakarta, Indonesia
Eurotrol, Milanese, Italy
Gargon Industrial, Mexico City, Mexico
River Sands Pty. Ltd., Queensland, Australia
Filtration Tech, Auckland, New Zealand
Alamo Water Poland, Izabeln, Poland
Aquatrol Company, Moscow, Russia
Impulse Group, St. Petersburg, Russia
Brenntag Nordic, Taby, Sweden
EcoFilter Technology, Liechtenstein

Jackson Twsp. MUA, NJ

The manufacturing of GreensandPlus is an ongoing, 24/7 process to ensure the highest quality water treatment media.

REACH Registration 01-2119452801-43-0020 for import to the EU.

Distributed by:

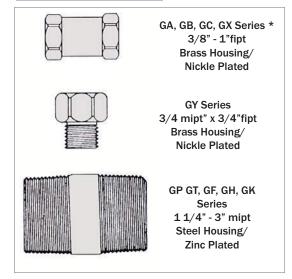
adopted on a commercial scale.

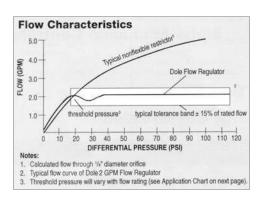
Inversand Company

226 Atlantic Avenue • P.O. Box 650 Clayton, NJ 08312 USA
T: 856-881-2345 • F: 856-881-6859

E:info@inversand.com •www.inversand.com

Disclaimer: The information and recommendations in this publication are true and reliable to the best of our knowledge. These recommendations are offered in good faith but without warranty or liability for consequential damage as conditions and method of use of our products are varied and beyond our control. We suggest the user determine the suitability and performance of our products before they are



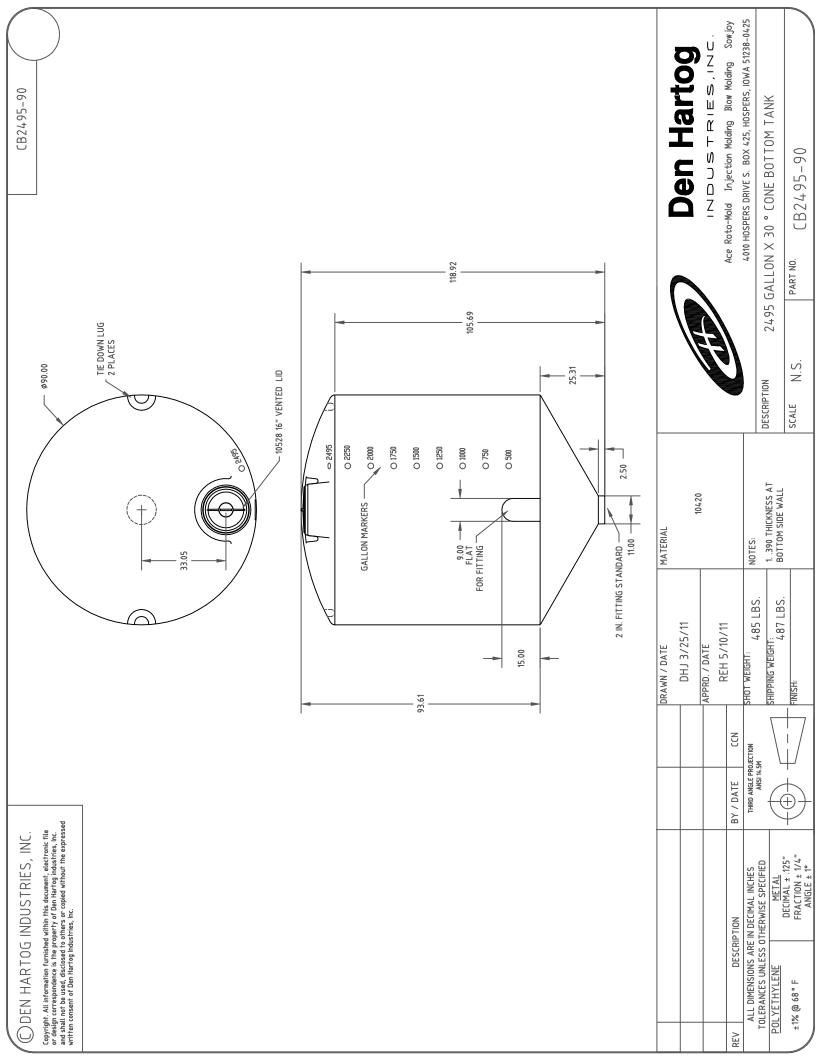

Flow Control Valves - Dole

Dole Flow Control Valve Features:

- Prevents over-pumping of low yield wells.
- Installs in the discharge line between check valve and pressure tank.
- Do not use to suspend pipe.
- Self cleaning, designed to deliver constant volume of water over wide pressure drop range.
- Flow rated maintained within +/- 15% up to a pressure drop of 125 psi.
- Maximum system pressure 200 psi.
- · Lead Free.

	NEW	OLD	Flow	Inlet/	
	Part Nu	mber	(GPM)	Outlet	List Price
	Brass Hou	sing/Nickel Plate	d		
*	GA.06		0.06	3/8" FIPT	\$ 30.28
	GA.13	DV.13	0.13	3/8" fipt	30.28
	GA.19	DV.19	0.19	3/8" fipt	30.28
	GA.25	DV2.5	0.25	3/8" fipt	30.28
	GA.35		0.35	3/8" fipt	30.28
	GA.50	DV5	0.50	3/8" fipt	30.28
	GA.75	DV75	0.75	3/8" fipt	30.28
	GA1.0	DV10	1.0	3/8" fipt	30.28
*	GB1.0	DV10-1/2	1.0	1/2" fipt	35.21
	GB1.5	DV15	1.5	1/2" fipt	35.21
	GB2.0	DV20	2.0	1/2" fipt	35.21
	GB2.5	DV25	2.5	1/2" fipt	35.21
	GB3.0	DV30	3.0	1/2" fipt	35.21
	GB3.5	DV35	3.5	1/2" fipt	35.21
	GB4.0	DV40	4.0	1/2" fipt	35.21
	GB5.0	DV50-1/2	5.0	1/2" fipt	35.21
	GB6.0	DV60-1/2	6.0	1/2" fipt	35.21
*	GC1	DV1.0	1.0	3/4" fipt	46.59
	GC1.5		1.5	3/4" fipt	46.59
	GC2.0	DV2.0	2.0	3/4" fipt	46.59
	GC2.5	DV2.5-3/4	2.5	3/4" fipt	46.59
	GC3.0	DV30-3/4	3.0	3/4" fipt	46.59
	GC3.5	DV3.5-3/4	3.5	3/4" fipt	46.59
	GC4.0	DV40-3/4	4.0	3/4" fipt	46.59
	GC5.0	DV50	5.0	3/4" fipt	46.59
	GC6.0	DV60	6.0	3/4" fipt	46.59
	GC7.0	DV70	7.0	3/4" fipt	46.59
	GC8.0	DV80	8.0	3/4" fipt	46.59
	GC9.0	DV90	9.0	3/4" fipt	46.59
	GC10	DV100	10.0	3/4" fipt	46.59
	GC11.5	DV115	11.5	3/4" fipt	46.59
*	GY1.0	DV1-3/4MXF	1.0	3/4"mipt x fipt	63.63
	GY1.5	DV1.5-3/4MXF	1.5	3/4"mipt x fipt	63.63
	GY2.0	DV2-3/4MXF	2.0	3/4"mipt x fipt	63.63
	GY2.5	DV2.5-3/4MXF	2.5	3/4"mipt x fipt	63.63
	GY3.0	DV3-3/4MXF	3.0	3/4"mipt x fipt	63.63
	GY3.5	DV3.5-3/4MXF	3.5	3/4"mipt x fipt	
	GY4.0	DV4-3/4MXF	4.0	3/4"mipt x fipt	
	GY5.0	DV5-3/4MXF	5.0	3/4"mipt x fipt	
	GY6.0	DV6-3/4MXF	6.0	3/4"mipt x fipt	
	GY7.0	DV7-3/4MXF	7.0	3/4"mipt x fipt	

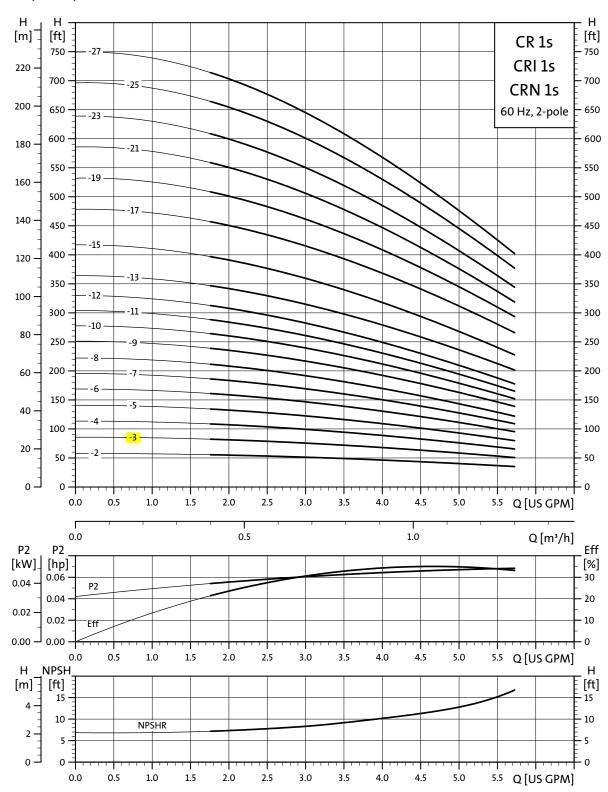
www.americangranby.com


Flow Control Valves - Dole

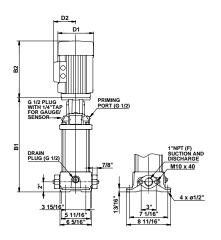
NEW	OLD	Flow	Inlet/	
Part Nu	mber	(GPM)	Outlet	List Price
GY8.0	DV8-3/4MXF	8.0	3/4"mipt x fipt	\$ 63.63
GY9.0	DV9-3/4MXF	9.0	3/4"mipt x fipt	63.63
GY10	DV10-3/4MXF	10.0	3/4"mipt x fipt	63.63
GY11.5	,	11.5	3/4"mipt x fipt	63.63
GX1.0	DV10-1	1.0	1" fipt	74.85
GX1.5	DV15-1	1.5	1" fipt	74.85
GX2.0	DV20-1	2.0	1" fipt	74.85
GX2.5	DV25-1	2.5	1" fipt	74.85
GX3.0	DV30-1	3.0	1" fipt	74.85
GX3.5	DV35-1	3.5	1" fipt	74.85
GX4.0	DV40-1	4.0	1" fipt	74.85
GX5.0	DV50-1	5.0	1" fipt	74.85
GX6.0	DV60-1	6.0	1" fipt	74.85
GX7.0	DV70-1	7.0	1" fpt	74.85
GX8.0	DV80-1	8.0	1" fpt	74.85
GX9.0	DV90-1	9.0	1" fpt	74.85
GX10	DV100-1	10.0	1" fipt	74.85
GX12	DV120	12.0	1" fipt	74.85
GX13.5	DV135-1	13.5	1" fipt	74.85
GX15	DV150	15.0	1" fipt	74.85
GX20	DV200	20.0	1" fipt	74.85
GX25	DV250	25.0	1" fipt	74.85
GX30	DV300	30.0	1" fipt	74.85
	sing/Zinc Plated			40- 4-
GP1.0	DV1.0-11/4	1.0	1 1/4" mipt	135.47 135.47
GP1.0 GP1.5		1.5	1 1/4" mipt	135.47
GP1.0 GP1.5 GP2.0		1.5 2.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5		1.5 2.0 2.5	1 1/4" mipt 1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0		1.5 2.0 2.5 3.0	1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5		1.5 2.0 2.5 3.0 3.5	1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0		1.5 2.0 2.5 3.0 3.5 4.0	1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0		1.5 2.0 2.5 3.0 3.5	1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0		1.5 2.0 2.5 3.0 3.5 4.0 5.0	1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0	DV1.0-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP8.0	DV1.0-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP8.0 GP9.0	DV1.0-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP8.0 GP9.0 GP10	DV1.0-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP8.0 GP9.0 GP10 GP12	DV1.0-11/4 DV75-11/4 DV10-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP9.0 GP9.0 GP10 GP12 GP13.5	DV1.0-11/4 DV75-11/4 DV10-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP9.0 GP9.0 GP10 GP12 GP13.5 GP15	DV1.0-11/4 DV75-11/4 DV10-11/4 DV12-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0	DV1.0-11/4 DV75-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV25-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0	1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP5.0 GP6.0 GP7.0 GP9.0 GP10 GP12 GP13.5 GP15 GP20 GP25	DV1.0-11/4 DV75-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0	1 1/4" mipt 1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP5.0 GP6.0 GP7.0 GP9.0 GP10 GP12 GP13.5 GP15 GP20 GP25 GP30	DV1.0-11/4 DV75-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV25-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0	1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP5.0 GP6.0 GP7.0 GP8.0 GP9.0 GP10 GP12 GP13.5 GP15 GP20 GP25 GP30 GT1.0	DV1.0-11/4 DV75-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV25-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0 30.0	1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP7.0 GP9.0 GP10 GP12 GP13.5 GP15 GP20	DV1.0-11/4 DV75-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV25-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0 30.0	1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP5.0 GP6.0 GP7.0 GP8.0 GP9.0 GP10 GP12 GP13.5 GP15 GP20 GP25 GP30 GT1.0 GT1.5	DV1.0-11/4 DV10-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV30-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0 30.0	1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP6.0 GP6.0 GP7.0 GP8.0 GP9.0 GP10 GP12 GP13.5 GP20 GP25 GP30 GT1.0 GT1.5 GT2.0	DV1.0-11/4 DV10-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV30-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0 30.0	1 1/4" mipt	135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP5.0 GP6.0 GP7.0 GP8.0 GP9.0 GP12 GP13.5 GP20 GP25 GP30 GT1.0 GT1.5 GT2.0 GT2.5	DV1.0-11/4 DV10-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV30-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0 30.0	1 1/4" mipt	135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47 135.47
GP1.0 GP1.5 GP2.0 GP2.5 GP3.0 GP3.5 GP4.0 GP5.0 GP5.0 GP6.0 GP6.0 GP7.0 GP9.0 GP10 GP12 GP13.5 GP20 GP25 GP30 GT1.0 GT1.5 GT2.0 GT2.5 GT3.0	DV1.0-11/4 DV10-11/4 DV10-11/4 DV12-11/4 DV15-11/4 DV20-11/4 DV30-11/4	1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.5 15.0 20.0 25.0 30.0	1 1/4" mipt 1 1/2" mipt	135.47 135.47

Part Number GPM	NEW	OLD	Flow	Inlet/	
Steel Housing/Zinc Plated 6.0 1 1/2" mipt \$ 150.05 GT7.0 DV7-11/2 7.0 1 1/2" mipt 150.05 GT8.0 8.0 1 1/2" mipt 150.05 GT9.0 DV9-11/2 9.0 1 1/2" mipt 150.05 GT10 DV10-11/2 10.0 1 1/2" mipt 150.05 GT12 12.0 1 1/2" mipt 150.05 GT13.5 13.5 1 1/2" mipt 150.05 GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT30 DV10-2 10.0 2" mipt 255.85 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12.5 DV12.2 12.0 2" mipt 255.85 GF21.5	Part Nui	mber	(GPM)		List Price
GT6.0 6.0 1 1/2" mipt \$ 150.05 GT7.0 DV7-11/2 7.0 1 1/2" mipt 150.05 GT8.0 8.0 1 1/2" mipt 150.05 GT9.0 DV9-11/2 9.0 1 1/2" mipt 150.05 GT10 DV10-11/2 10.0 1 1/2" mipt 150.05 GT12 12.0 1 1/2" mipt 150.05 GT13.5 13.5 1 1/2" mipt 150.05 GT20 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT21 DV10-2 10.0 2" mipt 255.85 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12.5 15.	-				
GT7.0 DV7-11/2 7.0 1 1/2" mipt 150.05 GT8.0 8.0 1 1/2" mipt 150.05 GT9.0 DV9-11/2 9.0 1 1/2" mipt 150.05 GT10 DV10-11/2 10.0 1 1/2" mipt 150.05 GT12 12.0 1 1/2" mipt 150.05 GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF12 DV12-2 20.0 2" mipt 255.85	1	G ,		1 1/2" mipt	\$ 150.05
GT8.0 8.0 1 1/2" mipt 150.05 GT9.0 DV9-11/2 9.0 1 1/2" mipt 150.05 GT10 DV10-11/2 10.0 1 1/2" mipt 150.05 GT12 12.0 1 1/2" mipt 150.05 GT13.5 13.5 1 1/2" mipt 150.05 GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT30 DV30-11/2 20.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF10 DV10-2 10.0 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF13 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF23 <td< td=""><td>GT7.0</td><td>DV7-11/2</td><td>7.0</td><td></td><td></td></td<>	GT7.0	DV7-11/2	7.0		
GT9.0 DV9-11/2 9.0 1 1/2" mipt 150.05 GT10 DV10-11/2 10.0 1 1/2" mipt 150.05 GT12 12.0 1 1/2" mipt 150.05 GT13-5 13.5 1 1/2" mipt 150.05 GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 20.0 2" mipt 255.85 GF		•	8.0		150.05
GT10 DV10-11/2 10.0 1 1/2" mipt 150.05 GT12 12.0 1 1/2" mipt 150.05 GT13.5 13.5 1 1/2" mipt 150.05 GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF25 25.0 2" mipt </td <td>-</td> <td>DV9-11/2</td> <td></td> <td>1 1/2" mipt</td> <td>150.05</td>	-	DV9-11/2		1 1/2" mipt	150.05
GT12 12.0 1 1/2" mipt 150.05 GT13.5 13.5 1 1/2" mipt 150.05 GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF10 DV10-2 10.0 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF12 DV13-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV30-3 35.0 2-1/2" mipt 266.99 GH35 DV350	GT10	DV10-11/2	10.0	1 1/2" mipt	150.05
GT15 DV15-11/2 15.0 1 1/2" mipt 150.05 GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF10 DV20-2 20.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV350 35.0 2-1/2" mipt 566.99 GH30 30.0 2-1/2" mipt 566.99	GT12	·	12.0		150.05
GT20 DV20-11/2 20.0 1 1/2" mipt 150.05 GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF20 DV30-2 30.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 256.99 GH30 DV30-2 30.0 2" 1/2" mipt 566.99 GH35 DV450 45.0 2" 1/2" mipt 566.99	GT13.5		13.5	1 1/2" mipt	150.05
GT25 DV25-11/2 25.0 1 1/2" mipt 150.05 GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV300-2 30.0 2" 1/2" mipt 566.99 GH30 30.0 2" 1/2" mipt 566.99 GH45 DV450 45.0	GT15	DV15-11/2	15.0	1 1/2" mipt	150.05
GT30 DV30-11/2 30.0 1 1/2" mipt 150.05 GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 256.99 GH30 30.0 2" 1/2" mipt 566.99 GH35 DV350 35.0 2" 1/2" mipt 566.99 GH45 DV450 45.0 2" 1/2" mipt 566.99 GH50 DV650 65.0	GT20	DV20-11/2	20.0	1 1/2" mipt	150.05
GF10 DV10-2 10.0 2" mipt 255.85 GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 256.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH35 DV450 45.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH65 DV650	GT25		25.0		150.05
GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV30-2 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH55 DV550 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH80 DV8	GT30	DV30-11/2	30.0	1 1/2" mipt	150.05
GF11.5 11.5 2" mipt 255.85 GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GF30 DV30-2 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH55 DV550 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH80 DV8					
GF12 DV12-2 12.0 2" mipt 255.85 GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH60 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH80 DV	-	DV10-2			
GF13.5 DV135-2 13.5 2" mipt 255.85 GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH50 DV500 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
GF15 15.0 2" mipt 255.85 GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GK30 <td< td=""><td>-</td><td></td><td></td><td></td><td></td></td<>	-				
GF20 DV20-2 20.0 2" mipt 255.85 GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GK30		DV135-2			
GF25 25.0 2" mipt 255.85 GF30 DV30-2 30.0 2" mipt 255.85 GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH50 DV500 60.0 2-1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK30 30.0 <					
GF30 DV30-2 30.0 2" mipt 255.85 GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH60 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH70 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK30	GF20	DV20-2	20.0		
GH30 30.0 2-1/2" mipt 566.99 GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH80 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK55 DV5500 65.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49	GF25		25.0		255.85
GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH80 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK30 30.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK50	GF30	DV30-2	30.0	2" mipt	255.85
GH35 DV350 35.0 2-1/2" mipt 566.99 GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH80 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK30 30.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK50					
GH40 DV400 40.0 2-1/2" mipt 566.99 GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK65 <td< td=""><td>GH30</td><td></td><td></td><td></td><td>566.99</td></td<>	GH30				566.99
GH45 DV450 45.0 2-1/2" mipt 566.99 GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH80 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK30 30.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45	GH35	DV350	35.0		566.99
GH50 DV500 50.0 2-1/2" mipt 566.99 GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK70 70.0 3" mipt	GH40	DV400	40.0		566.99
GH55 DV550 55.0 2 1/2" mipt 566.99 GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 <td>GH45</td> <td>DV450</td> <td></td> <td></td> <td>566.99</td>	GH45	DV450			566.99
GH60 DV600 60.0 2-1/2" mipt 566.99 GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK80 80.0 3" mipt	GH50	DV500	50.0	2-1/2" mipt	566.99
GH65 DV650 65.0 2-1/2" mipt 566.99 GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49	GH55	DV550	55.0	2 1/2" mipt	566.99
GH70 DV700 70.0 2-1/2" mipt 566.99 GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK95 9		DV600	60.0	2-1/2" mipt	566.99
GH75 DV750 75.0 2-1/2" mipt 566.99 GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1	GH65	DV650	65.0		566.99
GH80 DV800 80.0 2-1/2" mipt 566.99 GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.	GH70	DV700	70.0		566.99
GH85 85.0 2-1/2" mipt 566.99 GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt<	GH75	DV750	75.0	2-1/2" mipt	566.99
GH90 DV900 90.0 2 1/2" mipt 566.99 GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt <td>GH80</td> <td>DV800</td> <td>80.0</td> <td></td> <td>566.99</td>	GH80	DV800	80.0		566.99
GK30 30.0 3" mipt 589.49 GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK80 30 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49	GH85		85.0	2-1/2" mipt	566.99
GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49	GH90	DV900	90.0	2 1/2" mipt	566.99
GK35 DV3500 35.0 3" mipt 589.49 GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49					
GK40 DV4000 40.0 3" mipt 589.49 GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49					
GK45 DV4500 45.0 3" mipt 589.49 GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49					
GK50 50.0 3" mipt 589.49 GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK40	DV4000		3" mipt	589.49
GK55 DV5500 55.0 3" mipt 589.49 GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	-	DV4500	45.0		589.49
GK60 60.0 3" mipt 589.49 GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK50		50.0		589.49
GK65 DV6500 65.0 3" mipt 589.49 GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK55	DV5500	55.0	3" mipt	589.49
GK70 70.0 3" mipt 589.49 GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK60				
GK75 75.0 3" mipt 589.49 GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK65	DV6500	65.0		589.49
GK80 80.0 3" mipt 589.49 GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK70		70.0		589.49
GK85 DV8500 85.0 3" mipt 589.49 GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49					589.49
GK90 90.0 3" mipt 589.49 GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49					
GK95 95.0 3" mipt 589.49 GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49	GK85	DV8500	85.0		
GK100 DV1000 100.0 3" mipt 589.49 GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49					
GK105 105.0 3" mipt 589.49 GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49					
GK110 110.0 3" mipt 589.49 GK115 115.0 3" mipt 589.49		DV1000			
GK115 115.0 3" mipt 589.49	GK105		105.0	3" mipt	589.49
GK120 DV1200 120.0 3" mipt 589.49	I				
	GK120	DV1200	120.0	3" mipt	589.49

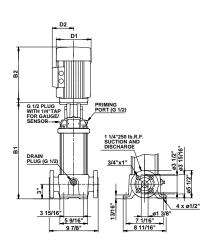
1/14/14


CR, CRI, CRN

Vertical multistage centrifugal pumps 60 Hz


9. Performance curves

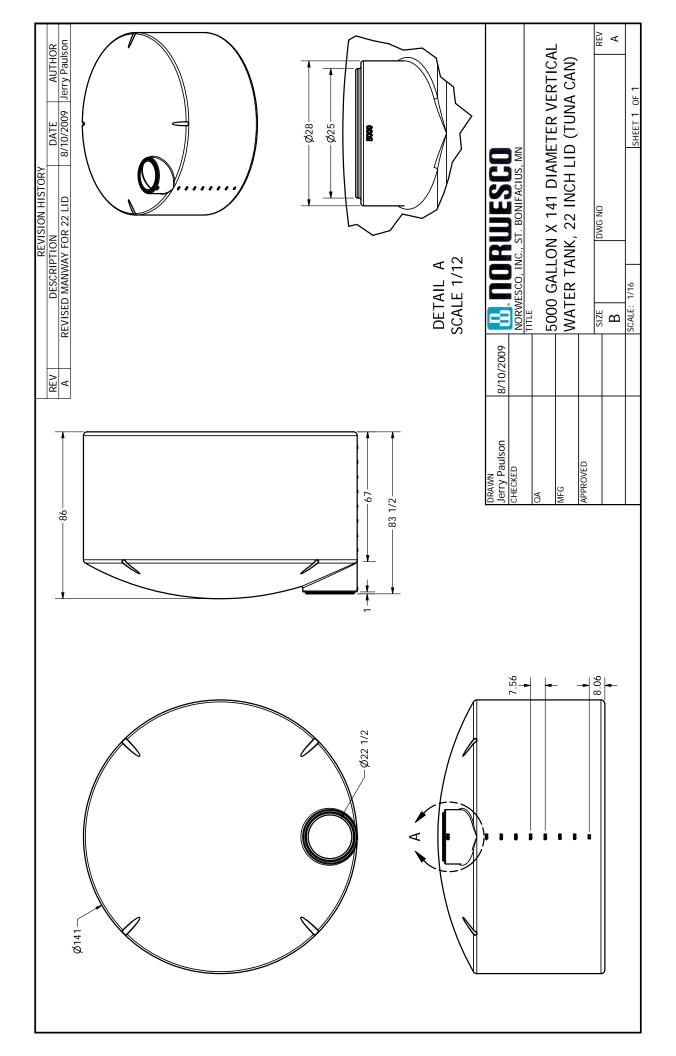
CR, CRI, CRN 1s



10. Technical data

CR 1s

TM03 1450 2205



	P2 [HP]				ANSI dimension	Net wt. [lb (kg)]		
Pump type		Ph.	Oval*	B1	TEFC			
				В1	D1	D2	B1+B2	1 . (3/1
OD 4- 0	4/0	1	•	11.97 (304)	6.64 (169)	5.52 (140)	21.01 (534)	58.20 (26)
CR 1s-2	1/3	3	•	11.97 (304)	6.69 (170)	5.52 (140)	20.23 (514)	54.45 (25)
00.4.0	410	1	•	11.97 (304)	6.64 (169)	5.52 (140)	21.01 (534)	58.64 (27)
CR 1s-3	1/3	3	•	11.97 (304)	6.69 (170)	5.52 (140)	20.23 (514)	54.90 (25)
00.4.4	1/0	1	•	12.68 (322)	6.64 (169)	5.52 (140)	21.72 (552)	59.52 (27)
CR 1s-4	1/3	3	•	12.68 (322)	6.69 (170)	5.52 (140)	20.93 (532)	55.78 (25)
		1	•	13.39 (340)	6.64 (169)	5.52 (140)	22.43 (570)	60.41 (27)
CR 1s-5	1/3	3	•	13.39 (340)	6.69 (170)	5.52 (140)	21.64 (550)	56.66 (26)
		1	•	14.09 (358)	6.64 (169)	5.52 (140)	23.53 (598)	63.05 (29)
CR 1s-6	1/2	3	•	14.09 (358)	6.69 (170)	5.52 (140)	22.75 (578)	59.97 (27)
		1	•	14.80 (376)	6.64 (169)	5.52 (140)	24.24 (616)	63.93 (29)
CR 1s-7	1/2	3	•	14.80 (376)	6.69 (170)	5.52 (140)	23.45 (596)	60.85 (28)
		1	•	15.51 (394)	6.64 (169)	5.52 (140)	24.95 (634)	64.82 (29)
CR 1s-8	1/2	3	•	15.51 (394)	6.69 (170)	5.52 (140)	24.16 (614)	61.73 (28)
		1	•	16.22 (412)	7.64 (194)	5.88 (149)	27.50 (699)	71.87 (33)
CR 1s-9	3/4	3	•	16.22 (412)	6.69 (170)	5.52 (140)	24.87 (632)	63.71 (29)
		1	•	16.93 (430)	7.64 (194)	5.88 (149)	28.21 (717)	72.75 (33)
CR 1s-10	3/4	3	•	16.93 (430)	6.69 (170)	5.52 (140)	25.58 (650)	64.60 (29)
		1	•	17.64 (448)	7.64 (194)	5.88 (149)	28.92 (735)	73.41 (33)
CR 1s-11	3/4	3	•	17.64 (448)	6.69 (170)	5.52 (140)	26.29 (668)	65.26 (30)
		1	•	18.35 (466)	7.64 (194)	5.88 (149)	29.63 (753)	74.30 (34)
CR 1s-12	3/4	3	•	18.35 (466)	6.69 (170)	5.52 (140)	27.00 (686)	66.14 (30)
		1	•	19.06 (484)	7.64 (194)	5.88 (149)	30.73 (781)	77.38 (35)
CR 1s-13	1	3	•	19.06 (484)	6.69 (170)	5.52 (140)	28.10 (714)	70.33 (32)
		1	•	20.47 (520)	7.64 (194)	5.88 (149)	32.15 (817)	78.93 (36)
CR 1s-15	1	3	•	20.47 (520)	6.69 (170)	5.52 (140)	29.52 (750)	71.87 (33)
		1	•	21.89 (556)	7.64 (194)	5.88 (149)	34.35 (873)	84.22 (38)
CR 1s-17	1 1/2	3	•	21.89 (556)	7.64 (194)	5.88 (149)	33.57 (853)	86.42 (39)
		1	-	23.31 (592)	7.64 (194)	5.88 (149)	35.77 (909)	85.98 (39)
CR 1s-19	1 1/2	3	_	23.31 (592)	7.64 (194)	5.88 (149)	34.98 (889)	88.18 (40)
		1	-	24.72 (628)	7.64 (194)	5.88 (149)	37.19 (945)	87.74 (40)
CR 1s-21	1 1/2	3	_	24.72 (628)	7.64 (194)	5.88 (149)	36.40 (925)	89.95 (41)
		1	-	26.14 (664)	7.64 (194)	5.88 (149)	38.60 (981)	89.51 (41)
CR 1s-23	1 1/2	3	_	26.14 (664)	7.64 (194)	5.88 (149)	37.82 (961)	91.71 (42)
		1		27.56 (700)	7.64 (194)	5.88 (149)	40.42 (1027)	94.58 (43)
CR 1s-25	2	3	_	27.56 (700)	7.64 (194)	5.88 (149)	40.02 (1017)	100.0 (45)
		1		28.98 (736)	7.64 (194)	5.88 (149)	41.83 (1063)	96.34 (44)
CR 1s-27	2	3	-	28.98 (736)	7.64 (194)	5.88 (149)	41.44 (1053)	101.8 (46)

All dimensions in inches unless otherwise noted.

* Oval flanged pump B1 and B1+B2 dimensions are one inch less than ANSI flanged pump and the weight is approximately 9 lb less.

Available.

∨ Product Overview

Description:

5000 Gallon Vertical Plastic Storage Tank

Norwesco Industries is a leading North American manufacturer of proprietary rotationally molded polyethylene tanks for above ground water & liquid storage applications.

Vertical Tank Specificati	Vertical Tank Specifications:				
Lid Size:	16" Manway (63485)				
Inlet:	N/A				
Outlet:	3" polypropylene threaded bulkhead fitting (62299) with 2" reducer (60330) siphon tube (60327)				
Specific Gravity:	1.5 (12.50 lbs. per gallon)				
FDA Approved:	Yes				
Gallon Markers:	Yes				
UV Inhibitors	Yes				
Colors:	Natural White, Black				
Tie Down Lugs:	No				
Translucent:	Yes (White Only)				
ANSI / NSF 61 Approved Resin:	Yes				
NSF Sticker Available:	California (Must Be Requested)				
Additional Fittings:	Available By Request				
Usage:	Liquids, Potable Water				

Vertical Plastic Storage Tanks are for storage and are not designed to be pressurized.