
Napa County Groundwater Sustainability Agency Technical Advisory Group Annual Report Water Year 2022

March 9, 2023

Outline

Napa County and Climate Change

Napa County & Subbasin Monitoring

Napa Valley Subbasin Water Budget

Sustainability Indicators & Metrics

GSP Implementation & Response Actions

DWR Letter of Approval: Jan. 26, 2023

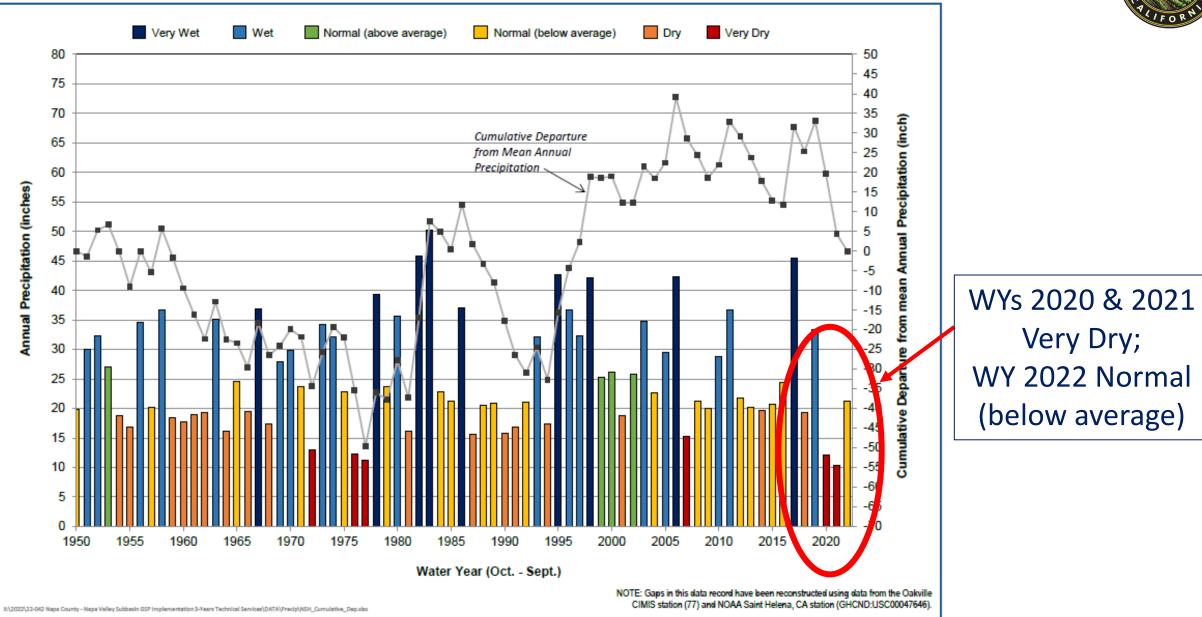
Recommended Corrective Actions for 5-Year Update (2027)

- Revise definition for chronic groundwater level decline sustainable management criterion to remove drought year condition or discuss management of extractions and recharge to offset decreases that occurred during drought
- Less rigorous MT for annual land subsidence, i.e., define a cumulative metric for the subsidence MT of 0.5 ft within a 5-year period; this also avoids incremental effects of land subsidence
- Consider DWR guidance intended to assist GSAs to sustainably manage depletions of interconnected surface water when the guidance is developed

NAPA VALLEY SUBBASIN

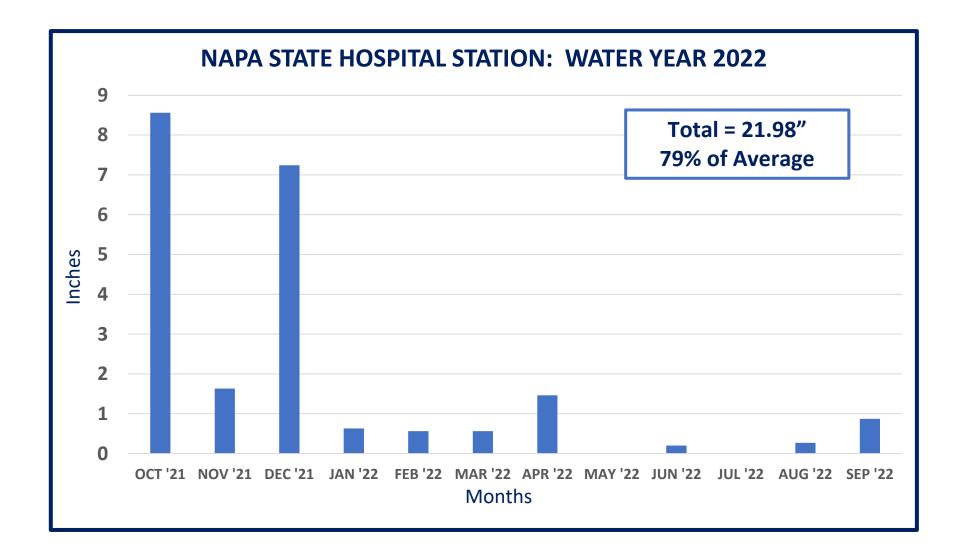
GROUNDWATER SUSTAINABILITY PLAN

January 2022

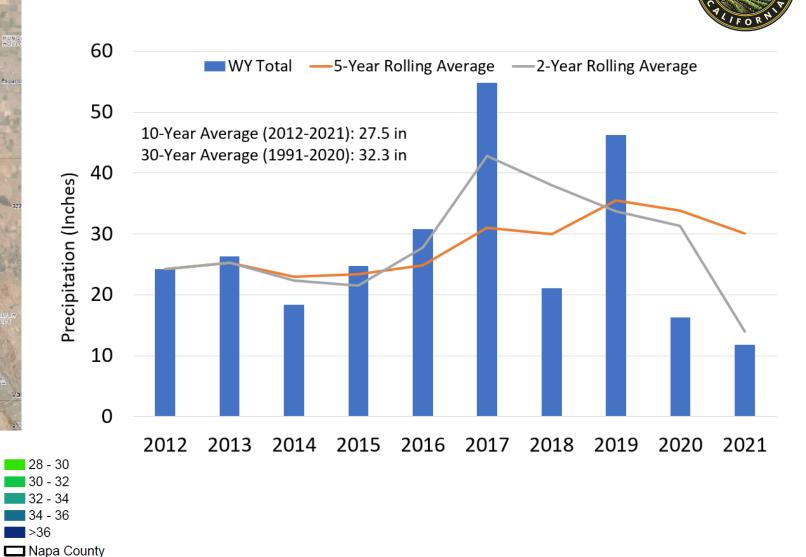


Napa County and Climate Change

Historical Precipitation at Napa State Hospital



Precipitation: Water Year 2022



PRISM Precipitation 10-Year Average (2012-2021)

HAPA-SONOHU

Precipitation Changing: Drier 10-Year Average

Data sources: DWR - subbasin boundaries; PRISM - precipitation Napa County Subbasins

Explanation

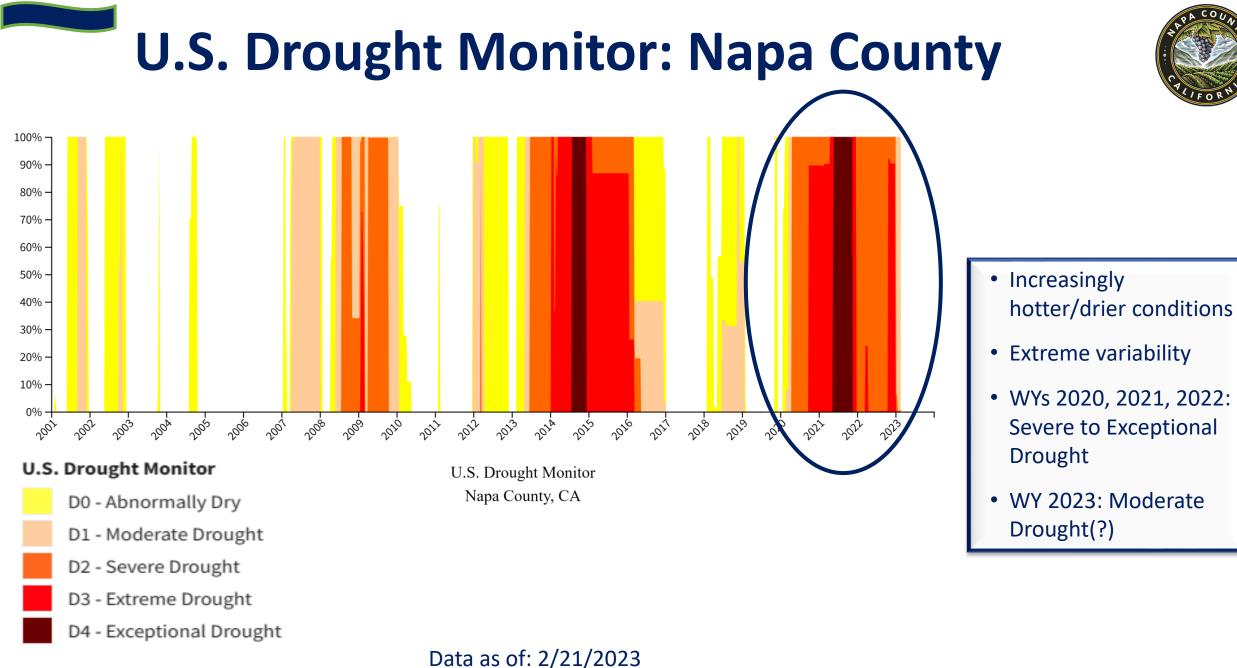
Precipitation

Averages

PRISM

(Inches)

<20

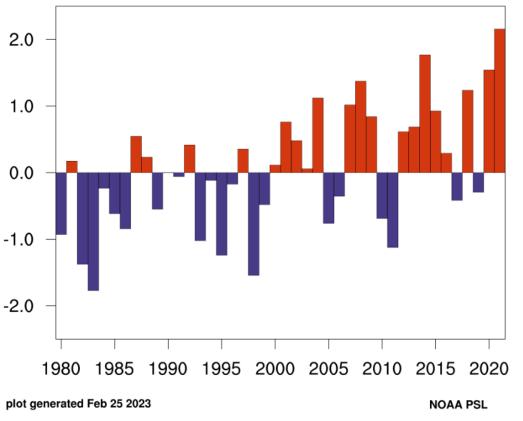

20 - 22

24 - 26 26 - 28

Eastern Napa County February 25, 2023

8

- 9 inches of snow
- 13th Wettest January on record over the past 129 years (7 inches above normal)
- 13th Wettest year to date over the past 129 years (January 2023)

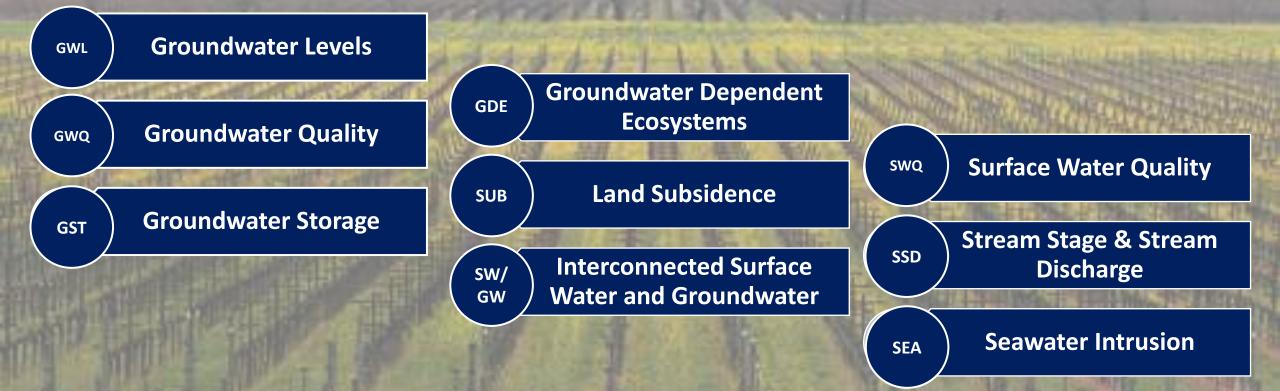

Source(s): USDA NASS

Napa: Evaporative Drought Demand Index "the thirst of the atmosphere"

"California has experienced its two most severe dry periods on record since 2000 (2012–16 and 2020– present) and researchers now report that the state has, in fact, been experiencing a "megadrought" since the turn of the century. Indeed, this "megadrought" appears to be the worst such drought since the year 800 and its severity is due, in large part, to climate change.¹"

"It is increasingly clear that climate change will stress water resources and its management like no other time in recorded history." (February 28, 2023; Informational Hearing: Committee on Water, Parks, and Wildlife)

12 month EDDI ending in September(1980-2021): for Napa



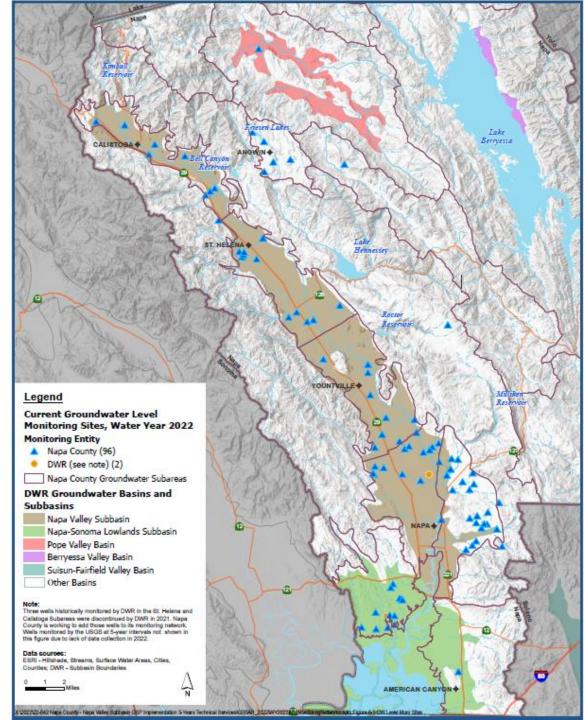
Napa County & Napa Valley Subbasin Monitoring

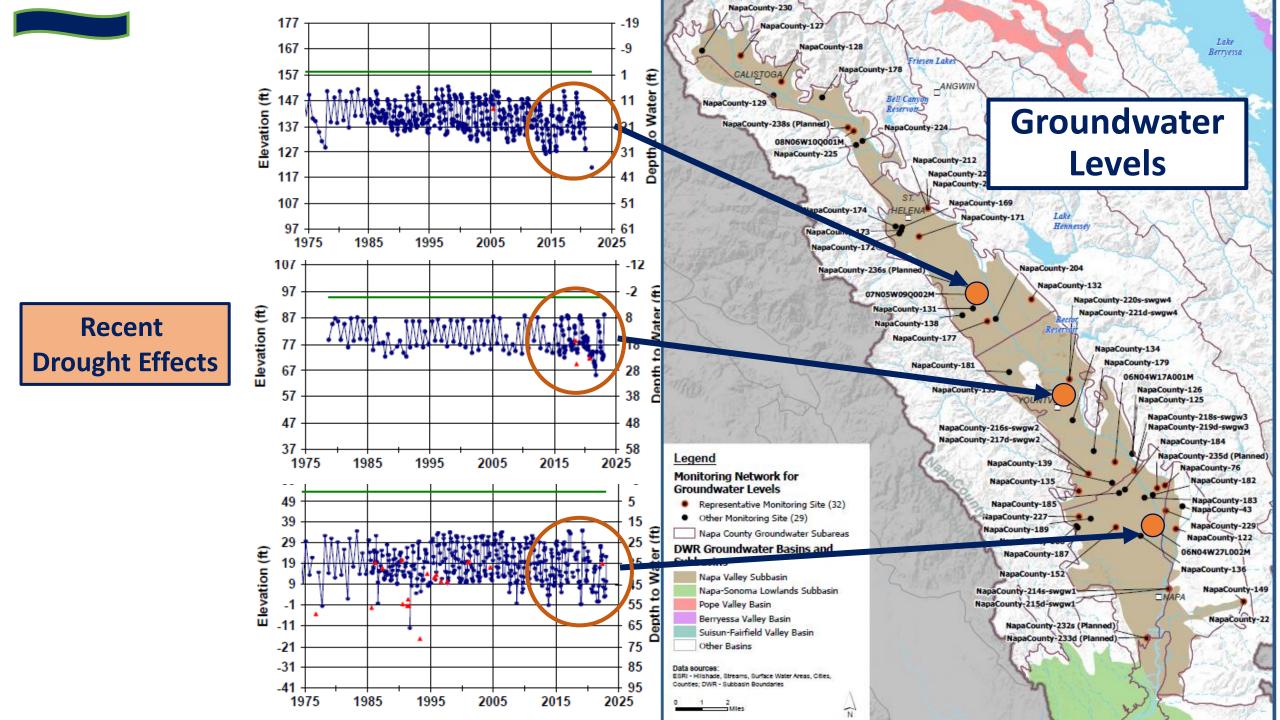
9 GSP Monitoring Networks

Measurement	Total			GSP-Specific	
	Napa Valley				
Type	County	Subbasin	RMS	Supplemental	Planned
GW Levels	98	59	27	30	8
GW Levels		27	0	27	0
NVIHM Model		1	1		
GW Levels		12	15	0	0
Benchmark Monitoring		8	5	3	0
InSAR		1			
Stream Stage and Stream Discharge		5	0	5	Yes
Stream Watch	39	33			Yes
Flood Control		18	0	18	0
nterconnected Surface Water GW Levels		26	7	11	8+
NVIHM Model		2	2		
GW Level		22	0	15	8
Stream Habitat		1			TBD
Remote Sensing		10	0	10	0
GW Quality	1,621¹	34	21	18	0
Chloride testing		16	9	7	2
Surface Water Quality SW Quality		6	7	0	0
	GW Levels NVIHM Model GW Levels Benchmark Monitoring InSAR Stream Stage and Stream Discharge Stream Watch Flood Control GW Levels NVIHM Model GW Level Stream Habitat Remote Sensing GW Quality	TypeCountyGW Levels98GW LevelsNVIHM ModelGW LevelsBenchmark MonitoringInSARStream Stage and Stream DischargeStream Watch39Flood ControlGW LevelsGW LevelsGW LevelsGW LevelsStream HabitatStream HabitatGW Quality1,621 ¹ Chloride testing	Measurement TypeNapa Valley SubbasinGW Levels9859GW Levels27NVIHM Model1GW Levels12Benchmark Monitoring8InSAR8Stream Stage and Stream Discharge5Stream Watch3933Flood Control18GW Levels26NVIHM Model2Stream Watch3933Flood Control18GW Levels26NVIHM Model22Stream Habitat10GW Quality1,621 ¹ 34Chloride testing16	Measurement TypeNapa Valley SubbasinRMSGW Levels985927GW Levels270NVIHM Model11GW Levels1215Benchmark Monitoring85InSAR85Stream Stage and Stream Discharge50Stream Watch3933Flood Control180GW Levels220Stream Habitat220Stream Habitat100GW Quality1,621 ¹ 3421Chloride testing169	Weasurement TypeNapa Valley SubbasinRMSSupplementalGW Levels98592730GW Levels277027NVIHM Model111GW Levels12150Benchmark Monitoring853InSAR505Stream Stage and Stream Discharge505Stream Watch39333Flood Control18018GW Levels22Flood Control11Stream Habitat22015Stream Habitat10010GW Levels10010GW Level1097Kemote Sensing1097

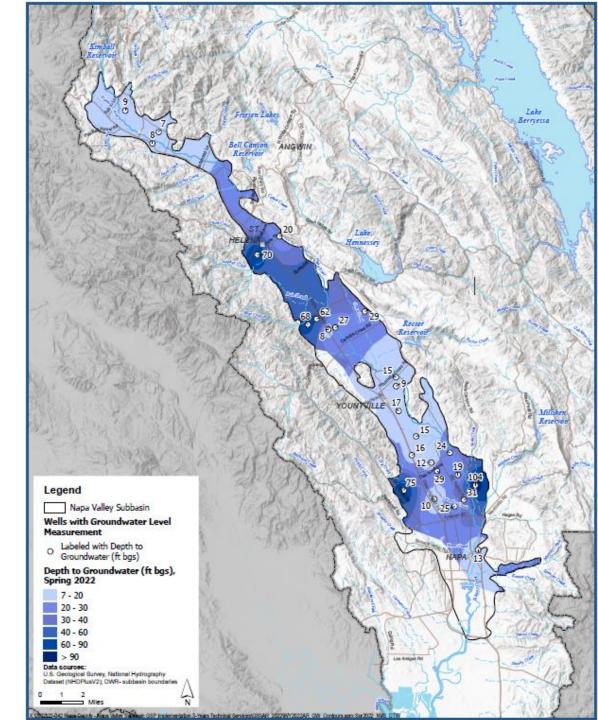
Nine Monitoring Networks

¹ Includes regulated facility sites


Groundwater Level Monitoring: 2022

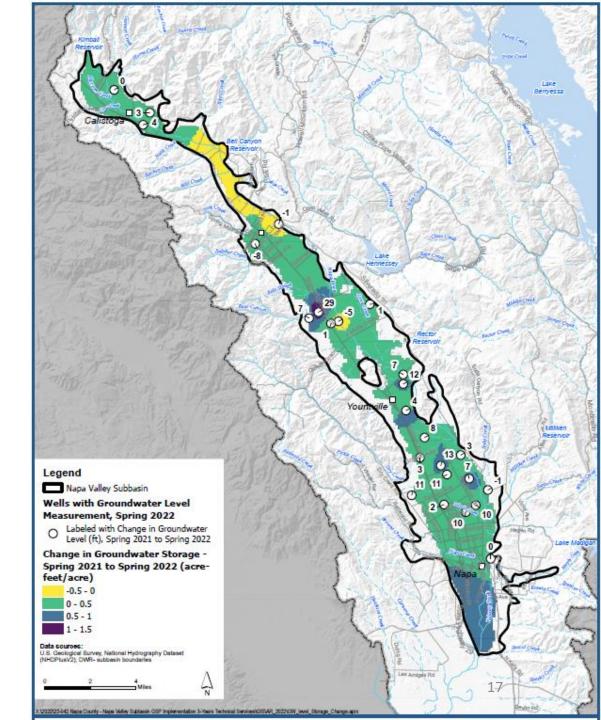

A Napa Co., 96 (including 10 SW/GW)

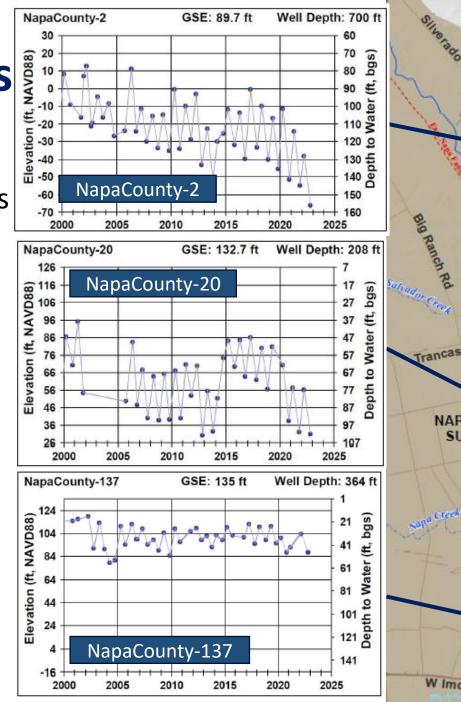
Total = 98

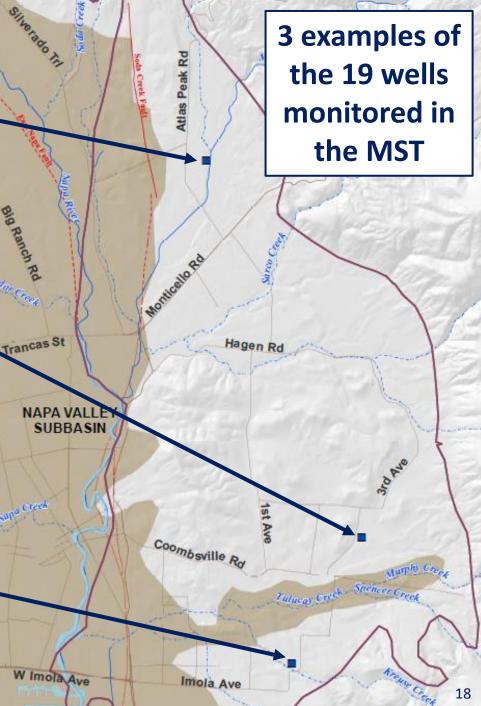


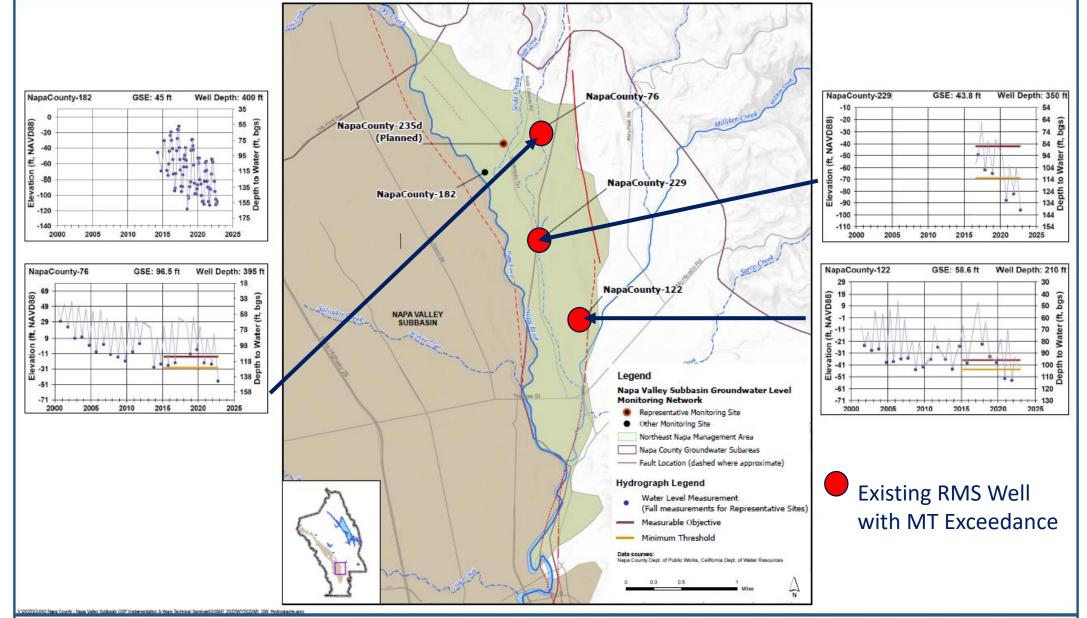
Monitoring Results: Depth to Groundwater

Napa Valley Subbasin

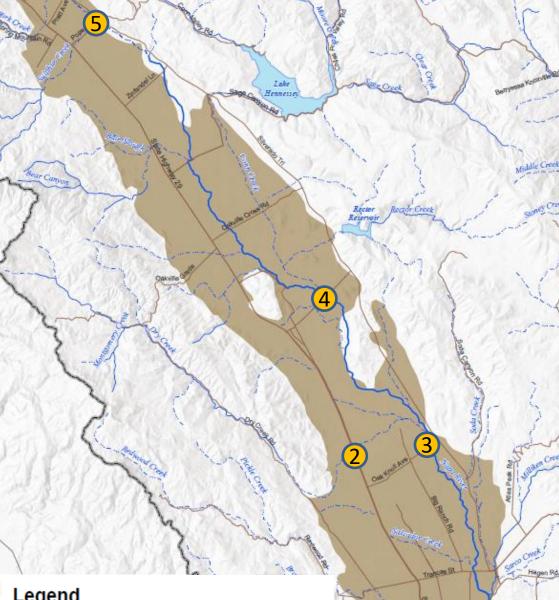

- Spring Depth to Water (DTW) in the Subbasin generally shallow and stable over time; recent drought effects observed in increased DTW
- 2022 Spring DTW ~10 to 60 ft below ground surface


Principal Aquifer Change in Storage: Spring 2021 to Spring 2022


- Change in GW storage computed using Spring GW level measurements
- Total estimated GW storage change for Spring 2021 to Spring 2022 = +6,509 AF


- Monitoring data available for more than four decades
- Recognized historical declines
- Stable groundwater levels
 ~ 2009-2020
- Many monitoring wells show recent declines

Northeast Napa Management Area: Hydrographs



Surface Water/Groundwater Interaction

Dedicated Monitoring Facilities at 5 Sites

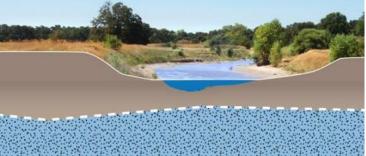
- DWR grant support: 2014 Pre-SGMA
- Paired Shallow Monitoring Wells (MWs) each site
 - Levels & quality
- Stream Gauge each site
 - Streamflow & quality
- > 8 years of data

Legend

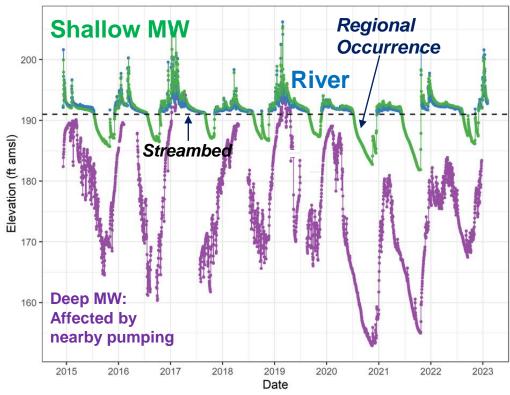
Surface Water-Groundwater Monitoring Sites

Dual-completion Monitoring Wells

20


Surface Water/Groundwater Interactions

Direct Connection Maintains/Discharges to Stream (Groundwater Baseflow)

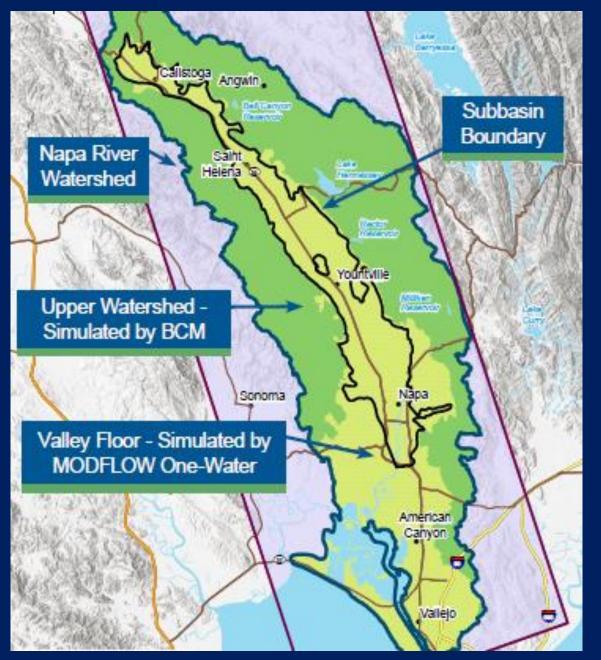

Indirect Connection Stream Seepage Independent of GW Levels

Groundwater Pumping Stream Loses Water/Recharge to GW

St. Helena SW/GW Site 5

River and Shallow MW not exhibiting short-term pumping effect²¹

The Nature Conservancy

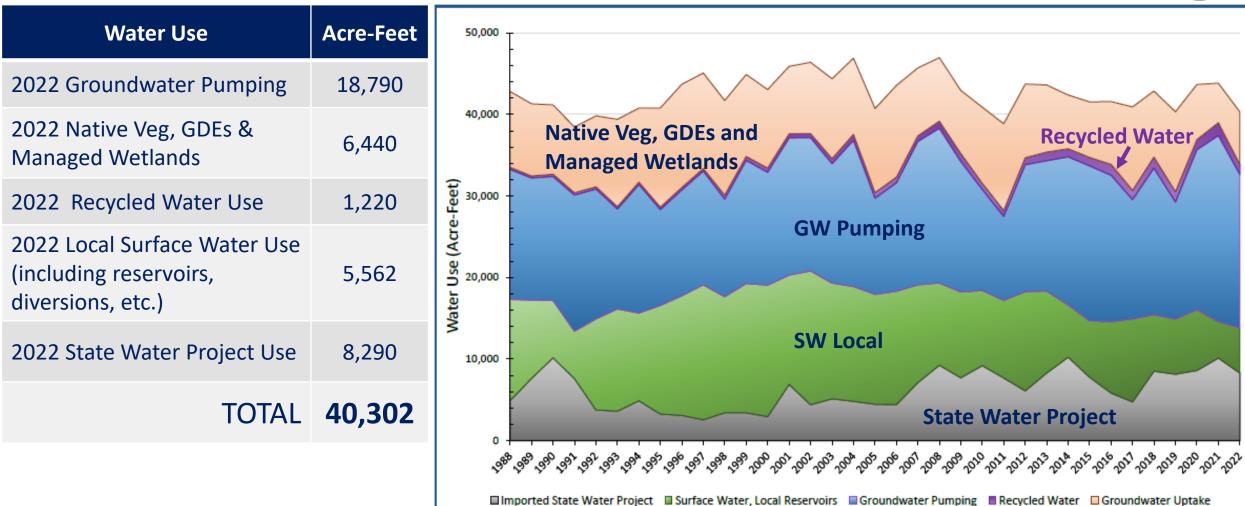

Four New MW Sites

- Four new monitoring sites (8 MWs)
- Site access arranged, and drilling commenced in January 2023
- Two sites (4 MWs installed; January/February 2023)
- When sites accessible, two other sites (4 MWs) to be installed (March-April 2023)

Napa Valley Subbasin Water Budget WY 2022

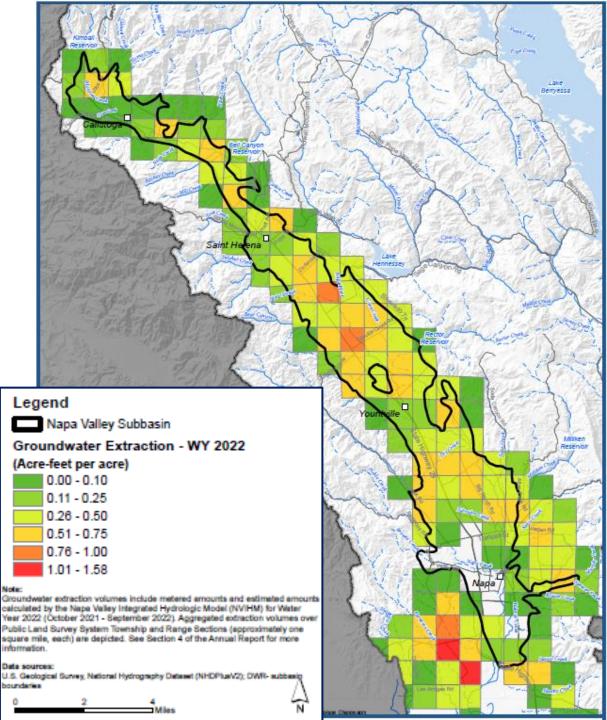
Napa Valley Integrated Hydrologic Flow Model (NVIHM)

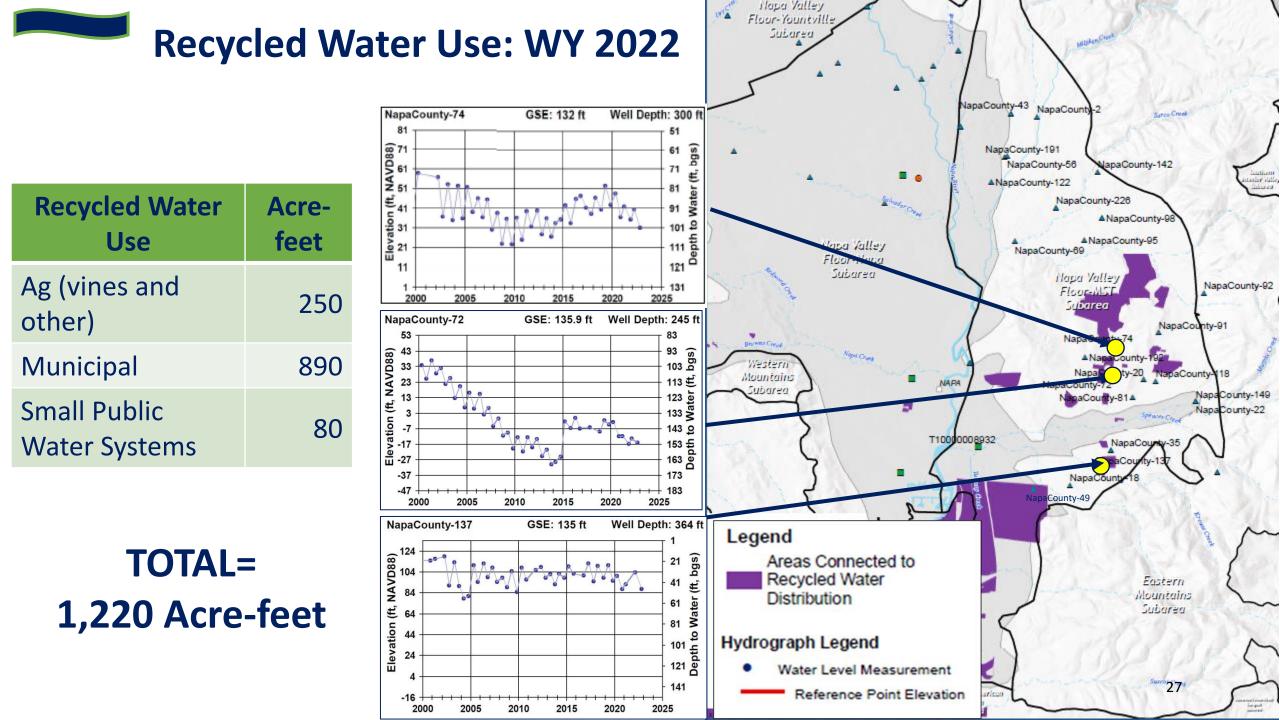
During GSP Development


- Develop water budgets: historical, current and projected (50-Year)
- Simulate response to climate change and future land use
- Evaluate projects and management actions to maintain sustainability

Updates WY 2022 Annual Report

- Basin Characterization Model (BCM): Climate WY 2022
- MODFLOW: Land use (2019) and water budget components thru WY 2022

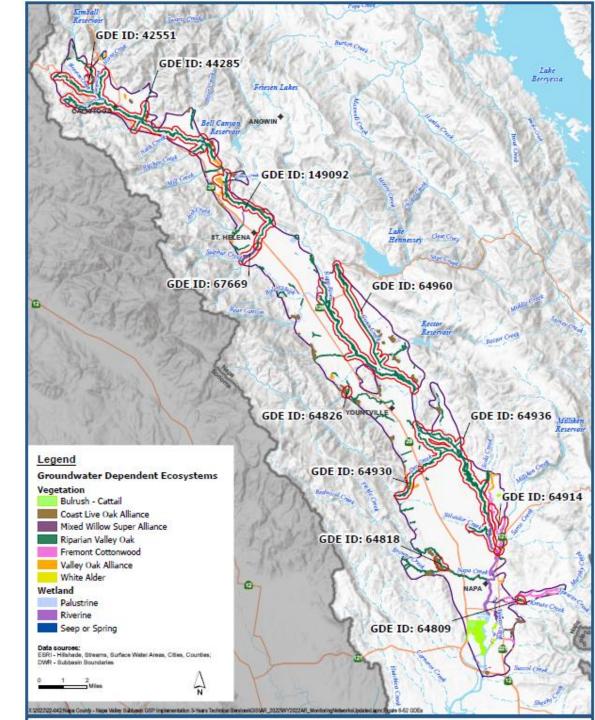

Groundwater Pumping, 2022 (Acre-feet)


Groundwater Pumping	Acre- feet	Percent Use
Ag (vines and other)	14,210	76%
Municipal	450	2%
Self-Supplied Users Domestic (2,815 AF for outdoor use)	3,060	16%
Small Public Water Systems	1,070	6%

TOTAL = **18,790** Acre-feet

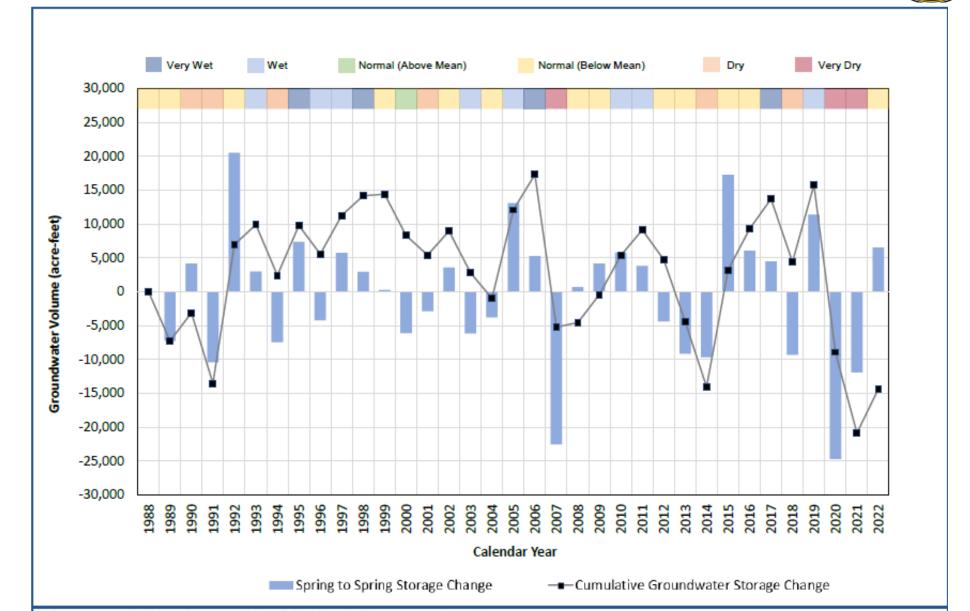
information. Data sources:

boundaries

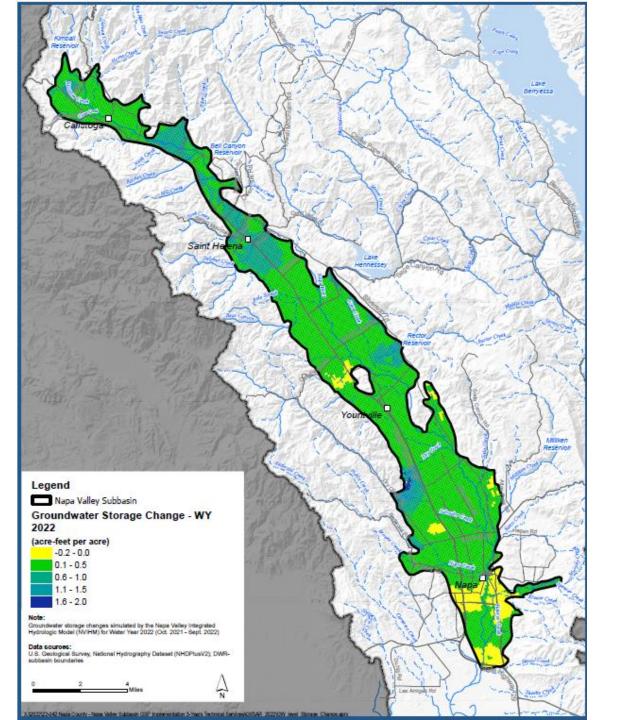


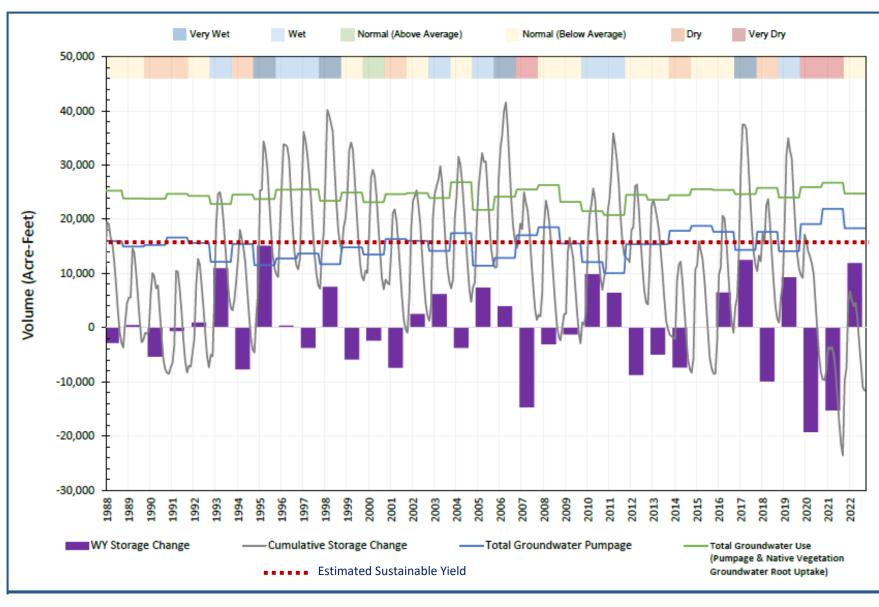
Groundwater Dependent Ecosystems Water Use: WY 2022

- GDEs are an important groundwater user and component of the water budget
- GDE Acreage (Vegetation and Wetland Types): 2,893 acres


TOTAL= 3,670 Acre-feet

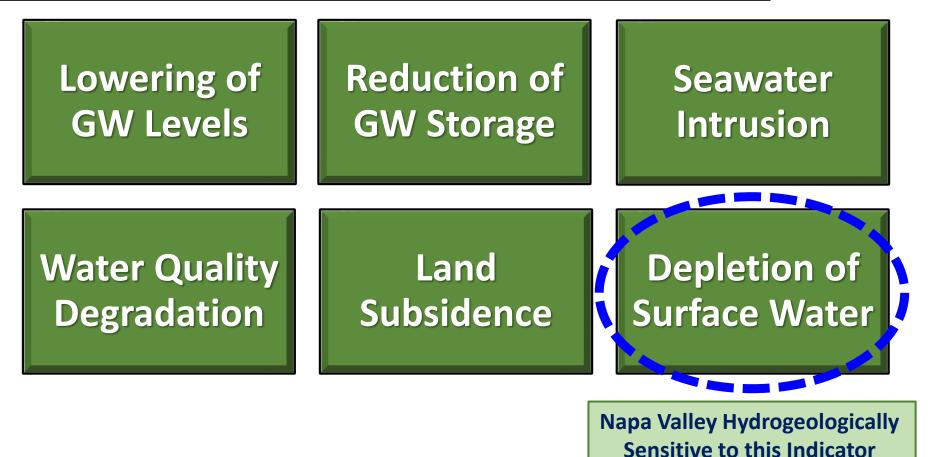
Change in Groundwater Storage: WY 2022


- Change in groundwater storage influenced by water year and pumping
- Increase in storage in WY 2022
- From 1988 to 2022, cumulative storage changes show depletion of supply.


GW Storage Change Simulated NVIHM 10/2021-09/2022

- Increase in GW storage in WY
 2022 across most of the Subbasin
- Increase in GW storage based on NVIHM (Oct. 2021 to Sept. 2022)
 = 11,910 AF

GW Pumping, Total Use, and GW Storage Change and Cumulative Change (1988-2022)


- APA COUNTY C. P. LIFORNIN
- Very dry years (2020-2021)
- Prolonged drought
- Increase in EDDI, i.e., atmospheric thirst
- Reduced recharge
- General increase in GW pumping since ~2014
- Cumulative effect on reduced GW storage

Sustainability Indicators & Metrics

Groundwater Sustainability Indicators

Not Causing <u>Undesirable Results</u>: Means Avoiding Significant and Unreasonable ...

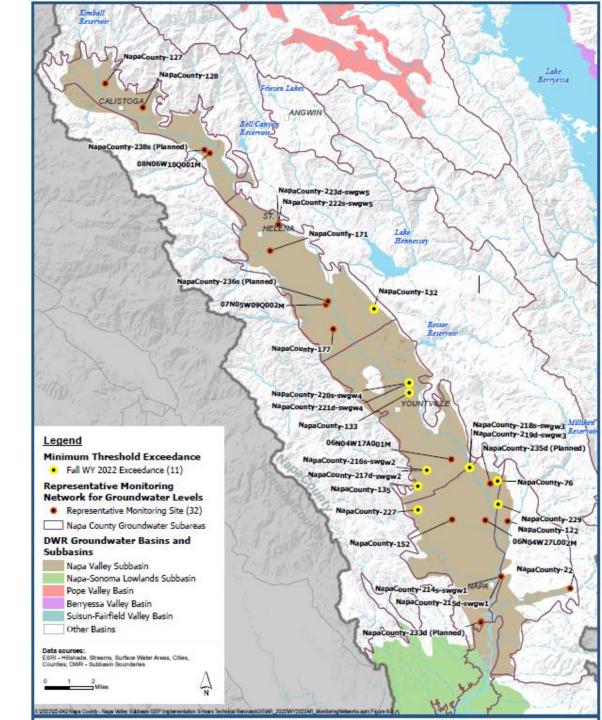
Sustainable Management Criteria (SMC) for Chronic Lowering of Groundwater Levels (CGWL)

Minimum Threshold

Minimum static October groundwater elevation prior to 2015

Undesirable Result

20% of designated RMS well levels fall below the MT in fall (October) for 3 consecutive years of fall measurements in non-drought years


<u>Trigger</u>

20% of designated RMS well levels are below the MT in the Fall during a <u>single</u> <u>year</u>

RMS Groundwater Levels: Fall 2022

- 24 RMS wells measured
- 11 of the 24 wells (46%) had exceedances
 - 5 wells had exceedances of > 10 ft
 - 1 well had exceedance of 2-5ft
 - 5 wells had exceedances of 0-1ft

MT Exceedance Summary for Fall 2022

- 11 of the 24 wells (46%) had exceedances
- 6 RMS wells with 3 consecutive years of Fall MT exceedances
- No UR since at least 2 of the 3 years are drought years

Table 1 Fall Groundwater Levels with respect to Minimum Thresholds for Chronic Lowering of Groundwater Levels

Chronic Lowering of Groundwater RMS Wells	Minimum Thresholds (15 11191)	Fall Groundwater Elevations (ft)			Comments	
		2020	2021	2022		
06N04W17A001M	42	30.56	13.06			
06N04W27L002M	-2	5.4	0.2	3.1		
07N05W09Q002M	126	128.34	120.85			
08N06W10Q001M	270	248.43	253.63			
NapaCounty-122	-45	-52.35	-54.1	-14.45		
NapaCounty-127	351	370.02	380.9	373.92		
NapaCounty-128	330	330.08	335.7	331.2		
NapaCounty-132	109	106.3	100.81	97.25	Three Years of MT Exceedance	
NapaCounty-133	73	71.8	73.91	71.02		
NapaCounty-135	33	52.68	17.89	20.89		
NapaCounty-152	55	60.16	67.38	59.5		
NapaCounty-171	165	158.27	208.35	167.3		
NapaCounty-177	131	136.51	139.75	136.68		
NapaCounty-214s-swgw1	2	3.432	3.69	3.882		
NapaCounty-215d-swgw1	2	3.198	3.34	3.648		
NapaCounty-216s-swgw2	66	70.995	65.93	67.915		
NapaCounty-217d-swgw2	60	59.627	52.47	56.137	Three Years of MT Exceedance	
NapaCounty-218s-swgw3	29	29.04	25.38	27.86		
NapaCounty-219d-swgw3	29	28.59	23.03	27.47	Three Years of MT Exceedance	
NapaCounty-22	150	163.55	162.4	163.3		
NapaCounty-220s-swgw4	75	74.871	70.61	74.511	Three Years of MT Exceedance	
NapaCounty-221d-swgw4	75	74.205	69.99	73.985	Three Years of MT Exceedance	
NapaCounty-222s-swgw5	185	185.47	182.3	187.05		
NapaCounty-223d-swgw5	164	156.12	155.82	172.4		
NapaCounty-227	59		38.53	42.8		
NapaCounty-229	-69	-87.59	-82.33	-95.93	Three Years of MT Exceedance	
NapaCounty-76	-29	-22.65	-24.54	-46.78		

SMC for Depletion of Interconnected Surface Water: GW Levels

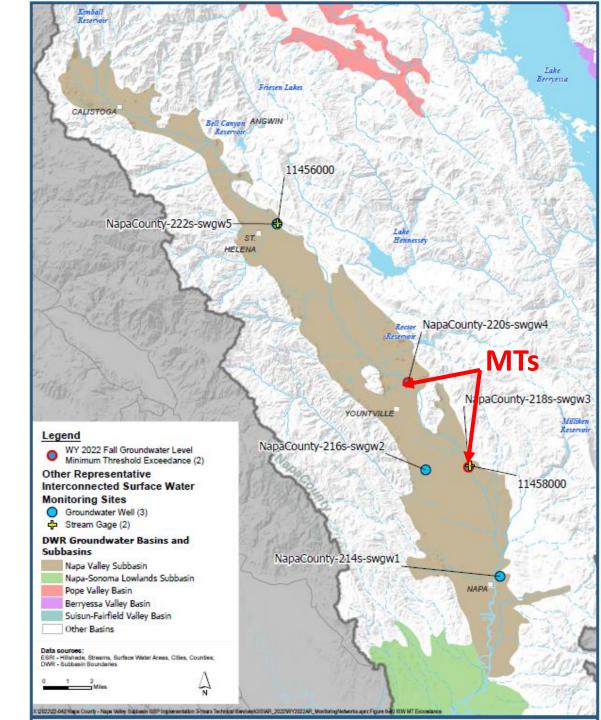
Minimum Threshold

Minimum static October groundwater elevation between 2005-2014 (10 years prior to SGMA adoption)

Summer/early Fall (June to October) streamflow depletion volumes exceeding the second highest seasonal volume of streamflow depletion that occurred from 2005-2014 at 2 RMS on Napa River at Pope St. and Oak Knoll Ave. [NEED MODEL]

Undesirable Result

➢ 20% of designated RMS well levels fall below the MT in Fall (October) for 3 consecutive years of fall measurements


Exceedance of MT for volume of streamflow depletion occurring 3 consecutive years at either of above stations. [NEED MODEL]

<u>Trigger</u>

Occurs when there is an exceedance of the MT in the Fall for Groundwater Level in a single year

Interconnected Surface Water: GW Levels and MTs

- 2 RMS/ISW wells with MT exceedances
- 1 RMS/ISW well with 3 consecutive Fall exceedances (north end of Northeast Napa area; Oak Knoll SW/GW site)

Interconnected Surface Water: MT Exceedance Summary for Fall 2022

Table 2 Fall Groundwater Levels with respect to Minimum Thresholds for Interconnected Surface Water

Interconnected Surface Water RMS Wells	Minimum Thresholds (ft msl)	Fall Grou	undwater El	levations	Comments
		2020	2021	2022	
NapaCounty-214s-swgw1	2	3.432	3.69	3.882	
NapaCounty-216s-swgw2	66	70.995	65.93	67.915	
NapaCounty-218s-swgw3	29	29.04	25.38	27.86	
NapaCounty-220s-swgw4	75	74.871	70.61	74.511	Three Years of MT Exceedance
NapaCounty-222s-swgw5	185	185.47	182.3	187.05	

- 2 of the 5 wells (40%) had MT exceedances
- 1 RMS well with 3 consecutive years of Fall MT exceedances
- UR occurred since one RMS/ISW well had 3 consecutive Fall exceedances (any water year type)

SMC for Depletion of Interconnected Surface Water: Depletion Volume

Interim Minimum Threshold

Summer/early Fall (June to October) streamflow depletion volumes exceeding the second highest seasonal volume of streamflow depletion that occurred from 2005-2014 at 2 RMS on Napa River at Pope St. and Oak Knoll Ave. [NEED MODEL]

Interim Undesirable Result

Exceedance of MT for volume of streamflow depletion occurring 3 consecutive years at either of above stations. [NEED MODEL]

<u>Trigger</u>

Occurs when there is an exceedance of the MT in the Fall for Streamflow Depletion Volume in a <u>single year</u>

Interconnected Surface Water and Model Results

Recent Seasonal (June to October) Streamflow Depletion Volume Estimated with NVIHM at RMS USGS Stream Sites

	Representative Site		Seasonal Depletion (AF)			WY 2022	Three
Well ID	Minimum Threshold (AF)	Measurable Objective (AF)	WY 2020	WY 2021	WY 2022	MT Exceedance	Consecutive WY MT Exceedances
11458000 (Napa River at Oak Knoll Avenue, Napa) ¹	3,190	2,370	740	3,829	3,120	-	-
11456000 (Napa River at Pope Street, St. Helena) ¹	1,400	1,120	141	1,018	1,215	-	-

 Site name represents the location of a U.S. Geological Survey stream site where the NCGSA monitors stream depletion, calculated by the NVIHM.

- Seasonal streamflow depletion volume conditions <u>do not fit</u> the interim definition for an undesirable result.
- However, an WY 2022, <u>an undesirable result occurred for</u> <u>this sustainability indicator based on groundwater</u> <u>elevations.</u>

Reduction of Groundwater Storage

Minimum Threshold

Net GW extraction by pumping exceeding the sustainable yield for the Subbasin, where net GW extraction is the volume extracted less any volume of augmented recharge achieved by projects implemented in the Subbasin.

Undesirable Result

Seven (7) year average annual net GW extraction in the Subbasin exceeds the sustainable yield.

UR occurred since 7-year average exceeds the sustainable yield for the Subbasin.

Sustainable Yield (Est.) = ~15,000 AFY

Year	Total Groundwater Extraction (AF)				
2016	17,980				
2017	14,640				
2018	17,960				
2019	14,340				
2020	19,610				
2021	22,840				
2022	18,790				
7 Year Avg.	18,023				

RMS Groundwater Levels: Response Action Required

- 11 RMS/Chronic GW Level Lowering wells have Fall 2022 MT exceedances
- 6 RMS/Chronic GW Level Lowering wells have three consecutive Fall MT exceedances
 - No UR for Chronic GWL lowering since two very dry years (2020 & 2021) and one normal (below avg.) year
- 2 RMS/ISW wells have Fall 2022 MT exceedances
- 1 RMS/ISW well has three consecutive Fall MT exceedances
 - UR has occurred for depletion of ISW since this applies to any water year type
- Avg. GW pumping over 7-year period exceeds Sustainable Yield
 - UR has occurred for Reduction in Groundwater Storage (WYs 2021 and 2022)

Sustainability	WY 2021	WY 2022		
Indicator	UR: Yes or No	UR: Yes or No		
Chronic GWL Lowering (CGWL)	Νο	Νο		
Depletion of Interconnected Surface Water (ISW)	Νο	Yes		
GW Quality Degradation	Νο	Νο		
Reduction of GW Storage	Yes	Yes		
Land Subsidence	Νο	Νο		
Seawater Intrusion	No	Future evaluation		
		43		

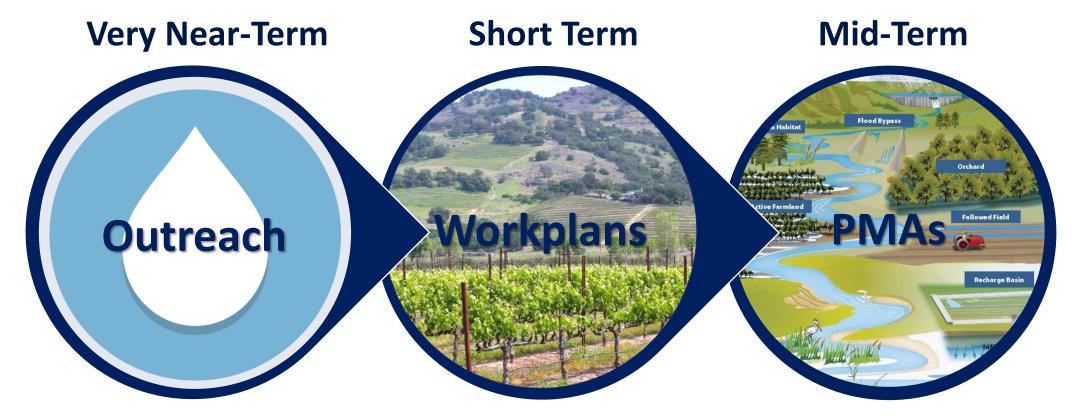
WY 2022 Annual Report: Summary

- Subbasin: GW level decline in response to drought and lack of recharge
 - Some GW replenishment due to precipitation in Oct-Dec 2021
 - Still had GW level MT exceedances in WY 2022
 - UR: Interconnected Surface Water
 - UR: Reduction of GW Storage
 - Coordination occurring for RMS Wells for GW Quality and Seawater Intrusion
- GW level declines in MST moderated before recent drought years, but drought effects observed

NAPA COUNTY GROUNDWATER SUSTAINABILITY

ANNUAL REPORT - WATER YEAR 2022

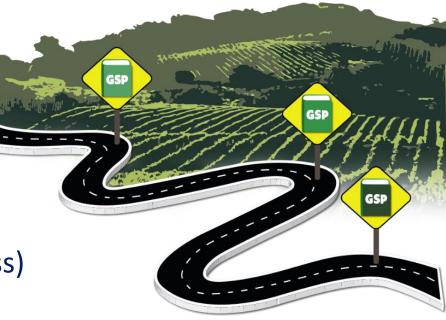
March 2023



Response Actions & GSP Implementation

Response Actions: Near-Term and Subsequent

- Voluntary Drought Measures
- GSA: Subbasin
- County: Watershed/County
- Local: Cities/Communities
- Agricultural/Wineries


- Stormwater Resource
- Water Conservation
- Groundwater Pumping Reduction
- Interconnected Surface Water & GDEs
- ID Recharge Areas of Interest
- Explore Recharge Opportunities
- Implement Workplans
 - GW Pumping Reduction Options

GSP Implementation

- NCGSA Technical Advisory Group (Kick-Off August 2022)
- Interconnected Surface Water and GDEs Workplan (Fall 2023)
- Napa County Vineyard and Winery Water Conservation Workplan (Summer 2023)
- Groundwater Pumping Reduction Workplan (Summer 2023)
- Stormwater Resource Plan (March 2023)
- Refining Water Use Data (ET: OpenET and Local Land-Based Sensors; in Progress)
- MW Installation (4 Sites/8 MWs: April 2023)
- Other MW Sites (being Evaluated)
- RCD and Stream Watch Monitoring (in Progress)
- Evaluate Potential Recharge Areas and Feasibility (in Progress)
- Stakeholder Coordination and Outreach (Ongoing)
- Coordination with Napa County Drought and Water Shortage Efforts

DWR Approved Napa Valley Subbasin GSP January 26, 2023

Thank You

Vicki Kretsinger Grabert

Luhdorff & Scalmanini, C. E. (530) 661-0109

Napa County Groundwater Sustainability Agency

Jamison Crosby, Natural Resources Conservation Manager Planning, Building, and Environmental Services Department 1195 Third Street Suite 210 Napa, CA 94559

David Morrison, Interim **Executive Officer** Napa County Groundwater Sustainability Agency 1195 Third Street Napa, CA 94559

Brian Bordona, *Interim Director* Planning, Building, and **Environmental Services Department** 1195 Third Street Napa, CA 94559